نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی مواد، دانشگاه شهید چمران اهواز، اهواز.

2 استاد، مهندسی مواد، دانشگاه شهید چمران اهواز، اهواز.

10.22068/jstc.2019.95983.1480

چکیده

در این مقاله، کامپوزیت هیبریدی سطحی Al 3003/Al3Zr + Al3Ti توسط فرآیند اصطکاکی اغتشاشی (FSP) به‌صورت درجای تولید شد. از ورق کارشده‌ی آلیاژ آلومینیم Al 3003-H14 به‌عنوان زیرلایه و از ذرات فلزی زیرکنیم و تیتانیم به‌عنوان تقویت‌کننده استفاده شد و تعداد شش پاس FSP اعمال گردید. سپس، بر روی نمونه‌‌های FSP شده یک مرحله عملیات حرارتی آنیل در دمای ℃ 500 و به‌مدت زمان 4 ساعت انجام شد. سختی و رفتار سایشی فلز پایه و نمونه‌‌های FSP شده در شرایط قبل و بعد از عملیات حرارتی آنیل مورد ارزیابی قرار گرفت. بررسی‌های‌ ریزساختاری با استفاده از روش میکروسکوپی نوری (OM) و الکترونی روبشی (SEM) و هم‌چنین آنالیز فازی توسط پراش پرتو ایکس (XRD) انجام شد. بررسی‌های ریزساختاری نشان داد که اعمال فرآیند FSP منجر به ریز و هم‌محور ‌شدن دانه‌ها با توزیع یکنواخت ذرات تقویت‌کننده می‌گردد. هم‌چنین مشاهده شد که واکنش شیمیایی در فصل مشترک بین زمینه آلومینیم با ذرات فلزی افزوده شده اتفاق افتاده و ترکیبات آلومینایدی Al3Zr و Al3Ti تشکیل می‌شوند. انجام عملیات حرارتی آنیل باعث بهبود واکنش‌های شیمیایی حالت جامد شده و به تشکیل بیش‌تر ترکیبات آلومینایدی کمک می‌کند. هم‌چنین مشاهده شد که بیش‌ترین سختی و مقاومت به سایش در کامپوزیت‌ هیبریدی و بعد از عملیات حرارتی آنیل حاصل می‌گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of heat treatment on microstructure and wear behavior of in-situ formed Al 3003/Al3Zr+ Al3Ti composite fabricated via friction stir processing

نویسندگان [English]

  • Mojtaba Zadali Mohammad kotiyani 1
  • khalil Ranjbar 2

1 Materials Science and Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Materials Science and Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

چکیده [English]

In this article, in-situ formed hybrid surface composite of Al 3003/Al3Zr + Al3Ti was fabricated by friction stir processing (FSP). A rolled Al 3003-H14 aluminum alloy sheet and zirconium and titanium metal powders were used as reinforcements and six passes of FSP were applied. Then, FSPed samples were subjected to annealing heat treatment at 500 ºC for 4 hours. Wear behavior and the hardness of the base metal as well as FSPed samples before and after annealing was measured. Microstructural observation was performed using optical (OM) and scanning electron microscope (SEM), and phase formation was identified with X-Ray diffraction (XRD). Microstructural examination revealed that applying the FSP, resulted in fine and equiaxed grains with more uniform distribution of reinforcing particles. It was also observed that chemical reaction occurred at the interface between the aluminum matrix and the metallic powders, to form aluminides of Al3Zr and Al3Ti. The post annealing heat treatment activated these solid state reactions and more aluminides were formed. It was also found that, the maximum hardness and wear resistance were obtained by the FSPed and annealed hybrid composite sample.

کلیدواژه‌ها [English]

  • Friction stir processing (FSP)
  • In-situ hybrid composite
  • Annealing
  • Al3Zr and Al3Ti Aluminides
  • Al 3003 alloy

[1] Gupta, N. Dinh Luong, D. and Cho, K., “Magnesium Matrix Composite Foams-Density, Mechanical Properties, and Applications,” Metals, Vol. 2, No. 4, pp. 238-252, 2012.

[2] Maxwell Rejil, C. Dinaharan, I. Vijay, S. J. and Murugan, N., “Microstructure and Sliding Wear Behavior of AA6360/(TiC + B4C) Hybrid Surface Composite Layer Synthesized By Friction Stir Processing on Aluminum Substrate”, Materials Science and Engineering A, Vol. 552, No. 1, pp. 336-344, 2012.

[3] Mahmoud, E. R. I. Takahashi, M. Shibayanagi, T. and Ikeuchi, K., “Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing”, Wear, Vol. 268, No. 9-10, pp. 1111–1121, 2010.

[4] Soleymani, S. Abdollah-zadeh, A. and Alidokht, S. A., “Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced By Friction Stir Processing”, Wear, Vol. 278– 279, No.1, pp. 41– 47, 2012.

[5] Hossieni, S. A. Ranjbar, K. Dehmolaei, R. and Amirani, A. R., “Fabrication of Al5083 Surface Composites Reinforced by CNTs and Cerium Oxide Nano Particles via Friction Stir Processing”, Journal of Alloys and Compounds, Vol. 622, No. 1, pp. 725–733, 2015.

[6] Sarkari Khorrami, M. Samadi, S. Janghorban, Z. and Movahedi, M., “In-situ Aluminum Matrix Composite Produced by Friction Stir Processing Using Fe Particles”, Materials Science & Engineering A, Vol. 641, No. 1, pp. 380–390, 2015.

[7] Tjong, S. C. and Ma, Z. Y., “Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites”, Materials Science and Engineering:  R:Reports, Vol. 29, No. 3-4, pp. 49-113, 2000.

[8] Khodabakhshi, F. Simchi, A. Kokabi, A. H. and Gerlich, A. P., “Friction Stir Processing of Aluminum Matrix Nanocomposites by Pre-Placing Elemental Titanium Powder: In-Situ Formation of Al3Ti Nanoparticles and Metallurgical Characteristics”, Materials Characterization, Vol. 108, No. 1, pp. 102-114, 2015.

[9] Qian, J. Li, J. Xiong, J. Zhang, F. and Lin, X., “In Situ Synthesizing Al3Ni for Fabrication of Intermetallic-Reinforced Aluminum Alloy Composites by Friction Stir Processing”, Materials Science and EngineeringA, Vol. 550, No. 1, pp. 279-285, 2012.

[10] Hosseini Zeidabadi, S. R. and daneshmanesh, H., “Fabrication and Characterization of In-Situ Al/Nb Metal/Intermetallic Surface  Composite by Friction Stir Processing”, Materials Science and Engineering A, Vol. 702,No. 1, pp. 189-195, 2015.

[11] Khodabakhshi, F. Simchi, A. Kokabi, A. H. Gerlich, A. P. and Nosko, M., “Effects of Post Annealing on the Microstructure and Mechanical Properties of Friction Stir Processed Al-Mg-TiO2 Nanocomposites”, Materials & Design, Vol. 63, No. 1, pp. 30-41, 2014.

[12] Ke, L. Huang, C. Xing, L. and Huang, K., “Al–Ni Intermetallic Composites Produced in Situ by Friction Stir Processing”, Journal of Alloys and Compounds, Vol. 503, No. 2, pp. 494–499, 2010.

[13] Lee, I.S. Kao, P. W. Chang, C. P. and Ho, N. J., “Formation of Al-Mo Intermetallic Particle-Strengthened Aluminum Alloys by Friction Stir Processing”, Intermetallics, Vol. 35, No. 1, pp. 9-14, 2013.

[14] Varin, R. A., “Intermetallic-Reinforced Light-MetMaterials Transactions A, Vol. 33, No. 1, pp. 193–201, 2002.

[15] Khodabakhshi, E. Kazemi, Sh. and Ahmadifard, S,al Matrix In-Situ Composites”, Metallurgical and  “Investigation the Mechanical and Microstructural Propreties of Copper Surface Composite Cu/SiO2 Fabricated by Friction Stir Processing”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 426-433, 2018.

[16] Abnar, B. Kazeminezhad, M. and Kokabi, A. H., “Effects of Heat Input in Friction Stir Welding on Microstructure and Mechanical Properties of AA3003-H18 Plates”, Transactions of Nonferrous Metals Society of China, Vol. 25, No. 7, pp. 2147- 2155, 2015.   

[17] Ahmadifard, S. Shahin, N. Kazemi, S. Heidarpour, A. and Shirazi, A., “Fabrication of A5083/SiC Surface Composite by Friction Stir Processing and its Characterization”, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 4, pp. 31-36, 2016.   

[18] Zadali Mohammad Kotiyani, M. Ranjbar, K. and Dehmolaei, R., “In- Situ Fabrication of Al3Zr Aluminide Reinforced AA3003 Alloy Composite by Friction Stir Processing”, Materials Characterization, Vol. 131, No. 1, pp. 78-90, 2017.                                                    

[19] Yousefpour, H. and Akbari Mousavi, S. A. A., “Investigations on Microstructure, Wear Behavior and Corrosion Resistance of Brass/Graphite Composite Produced by Friction Stir Processing”, In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 253-260, 2016.

[20] Wang, T. Jin, Z. and Zhao, J. C., “Thermodynamic Assessment of the Al-Zr Binary System”, Journal of Phase Equilibria, Vol. 22, No. 5, pp 544-551. 2001. 

[21] Kattner, U. R. Lin, J. C. and Chang, Y. A., “Thermodynamic Assessment and Calculation of the Ti-Al System”, Metallurgical and Materials Transactions A, Vol. 23, No. 8, pp. 2081-2090, 1992.

[22] Lee, I. S. Kao, P. W. and Ho, N. J., “Microstructure and Mechanical Properties of Al–Fe in Situ Nanocomposite Produced by Friction Stir Processing”, Intermetallics, Vol. 16, No. 9, pp. 1104–1108, 2008.

[23] Hsu, C. J. Chang, C. Y. Kao, P. W. Ho, N. J. and Chang, C. P., “Al–Al3Ti Nanocomposites Produced in Situ by Friction Stir Processing”, Acta Materialia, Vol. 54, No. 19, pp. 5241–5249, 2006. 

[24] Daneshgar, A. Mosallaee, M. Syfodini, A. and Moshrefifar, M., “Effects of Friction Stir Processing Number Pass on Reinforcement Particles Distribution and Mechanical Properties of Al/SiC+BNh Composite”, In Persian, surface science & technology, Vol. 14, No. 36 ,pp. 17-27, 2018.

[25] Dinaharan, I. Saravanakumar, S. Kalaiselvan, K. and Gopalakrishnan, S., “Microstructure and Sliding Wear Characterization of Cu/TiB2 Copper Matrix Composites Fabricated Via Friction Stir Processing”, Journal of Asian Ceramic Societies, Vol. 5, No. 3, pp. 295-303, 2017. 

[26] Ahmadifard, S. Kazemi, S. and Heidarpour, A., “Fabrication of Al5083/TiO2 Surface Composite by Friction Stir Process and Investigating its Microstructural”, Mechanical and Wear Properties, In Persian, Modares Mechanical Engineering, Vol. 15, No. 12, pp. 55-62, 2015. 

[27] Hosseini, N. Karimzadeh, F. Abbasi, M. H. and Enayati, M. H., “Tribological Properties of Al6061–Al2O3 Nanocomposite Prepared by Milling and Hot Pressing”, Materials and Design, Vol. 31, No. 10, pp. 4777–4785, 2010.

[28] Anvari, S. R. Karimzadeh, F. and Enayati, M. H., “Wear Characteristics of Al-Cr-O Surface Nano-composite Layer Fabricated on Al6061 Plate by Friction Stir Processing”, Wear, Vol. 304, No. 1-2, pp. 144–151, 2013.

[29] Ghanbari, D. Kasiri Asgarani, M. Amini, K. and Gharavi, F., “Influence of Heat Treatment on Mechanical Properties and Microstructure of the Al2024/SiC Composite Produced by Multi–Pass Friction Stir Processing”, Measurement, Vol. 104, No. 1, pp. 151-158, 2017.   

[30] Dinaharan, I. Ashok kumar, G. Vijay, S.J. and Murugan, N., “Development of Al3Ti and Al3Zr Intermetallic Particulate Reinforced Aluminum Alloy AA6061 In Situ Composites Using Friction Stir Processing”, Materials & Design, Vol. 63, No. 1, pp. 213-222, 2014.