نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

10.22068/jstc.2018.85739.1442

چکیده

در این مقاله تحلیل گسترده‌ای بر روی پیش‌بینی رفتار کمانش و پس‌کمانش پنل‌های متورق کامپوزیتی تک‌جهته دارای انحنا (کمان صفر و 60 درجه) به‌ روش المان‌ محدود انجام شده است. تحلیل با استفاده ‌از قانون کشش-جدایش برای هندسه‌های حاوی یک و دو تورق عرضی صورت پذیرفته و جدایش بین لایه‌های مجاور حاوی این آسیب و اثر متقابل آن در پاسخ‌ به بارگذاری فشاری ارزیابی شده است. اثر هندسه‌ بدون عیب، هندسه‌های حاوی تورق بدون قابلیت رشد و دارای قابلیت رشد برروی رفتار پس‌کمانش مورد ‌بررسی قرار گرفته ‌است. تأثیر متقابل غیرخطی بسیار پیچیده‌ بین هندسه، ماده و تغییر شکل‌های بزرگ در ‌نظر گرفته شده است. پنل‌های با زاویه‌ کمان صفر درجه با دیگر مقالات موجود مقایسه ‌شده و تطابق مناسبی حاصل گردیده‌ است. تفاوت بین رفتار کمانشی این سازه‌ها در حضور یک و دو تورق مورد تحلیل قرار گرفته و همچنین تمایز بین هندسه‌های تخت و زینی شکل در رفتار کمانش کلی، محلی و رشدهای پایدار و ناپایدار تورق مدنظر می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Post buckling behavior analysis of unidirectional saddle shaped composite panels containing delaminations using cohesive zone modeling

نویسندگان [English]

  • Morteza Moradi 1
  • behnam Ameri 1
  • Bijan Mohammadi 2

1 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

In this paper an extensive analysis have been performed on the buckling and post buckling response of unidirectional delaminated composite panels with the different curvatures (zero and 60 degrees of arc’s angle) by means of finite element method. Adjacent plies debonding is simulated by traction–separation law for the geometries containing one and two delaminations through the width and the influence of them on the response of the structure to the compressive loading is investigated. The effect of intact geometry and defective geometry containing delaminations with and without growth capability have been investigated. The complex contribution between nonlinear geometry, material non linearity, and large deformation is considered. Comparing the present results with other literatures in the special case of flat plates, indicates an excellent accuracy. The differences between the global and local buckling response, stable and unstable delamination growth of structures containing one and two delaminations in flat and saddles geometries is compared.

کلیدواژه‌ها [English]

  • Post-buckling
  • Cohesive Zone Modeling
  • Delamination
  • Curvature
  • Composite

[1]   Kutlu, Z. and  Chang, F.-K., “Composite Panels Containing Multiple through-the-Width Delaminations and Subjected to Compression. Part I: Analysis“ Composite structures, Vol. 31, No. 4, pp. 273-296, 1995.

[2]   Kutlu, Z. and  Chang, F.-K., “Composite Panels Containing Multiple through-the-Width Delaminations and Subjected to Compression. Part Ii: Experiments & Verification“ Composite Structures, Vol. 31, No. 4, pp. 297-314, 1995.

[3]   Mohammadi, B. and  Shahabi, F., “On Computational Modeling of Postbuckling Behavior of Composite Laminates Containing Single and Multiple through-the-Width Delaminations Using Interface Elements with Cohesive Law“ Engineering Fracture Mechanics, Vol. 152, pp. 88-104, 2016.

[4]   Wang, S. and  Zhang, Y., “Buckling, Post-Buckling and Delamination Propagation in Debonded Composite Laminates Part 2: Numerical Applications“ Composite Structures, Vol. 88, No. 1, pp. 131-146, 2009.

[5]   Zhang, Y. and  Wang, S., “Buckling, Post-Buckling and Delamination Propagation in Debonded Composite Laminates: Part 1: Theoretical Development“ Composite Structures, Vol. 88, No. 1, pp. 121-130, 2009.

[6]   Camanho, P. P. and  Dávila, C. G., “Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials“, 2002.

[7]   Kharazi, M. and  Ovesy, H., “Postbuckling Behavior of Composite Plates with through-the-Width Delaminations“ Thin-Walled Structures, Vol. 46, No. 7-9, pp. 939-946, 2008.

[8]   Kharazi, M., Ovesy, H. and  Taghizadeh, M., “Buckling of the Composite Laminates Containing through-the-Width Delaminations Using Different Plate Theories“ Composite Structures, Vol. 92, No. 5, pp. 1176-1183, 2010.

[9]   Kahya, V., “Buckling Analysis of Laminated Composite and Sandwich Beams by the Finite Element Method“ Composites Part B: Engineering, Vol. 91, pp. 126-134, 2016.

[10] Juhász, Z. and  Szekrényes, A., “The Effect of Delamination on the Critical Buckling Force of Composite Plates: Experiment and Simulation“ Composite Structures, Vol. 168, pp. 456-464, 2017.

[11] Saeedifar, M., Najafabadi, M. A., Yousefi, J., Mohammadi, R., Toudeshky, H. H. and  Minak, G., “Delamination Analysis in Composite Laminates by Means of Acoustic Emission and Bi-Linear/Tri-Linear Cohesive Zone Modeling“ Composite Structures, Vol. 161, pp. 505-512, 2017.

[12] Tay, T., Shen, F., Lee, K., Scaglione, A. and  Di Sciuva, M., “Mesh Design in Finite Element Analysis of Post-Buckled Delamination in Composite Laminates“ Composite Structures, Vol. 47, No. 1-4, pp. 603-611, 1999.

[13] Liu, P., Gu, Z., Peng, X. and  Zheng, J., “Finite Element Analysis of the Influence of Cohesive Law Parameters on the Multiple Delamination Behaviors of Composites under Compression“ Composite Structures, Vol. 131, pp. 975-986, 2015.

[14] Reinoso, J., Paggi, M. and  Blázquez, A., “A Nonlinear Finite Thickness Cohesive Interface Element for Modeling Delamination in Fibre-Reinforced Composite Laminates“ Composites Part B: Engineering, Vol. 109, pp. 116-128, 2017.

[15] Shokrieh, M. M. Ghajar, M. Salamattalab, M. and Madoliat, R., “Progressive damage modeling of laminated composites by considering simultaneous effects of interlaminar and intralaminar damage mechanisms”, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 1-8, 2015.

[16] Nopour, H. Kabiri Ataabadi, A. and Shokrieh, M.M., “Buckling of composite plate made of curvilinear fiber with linear and nonlinear fiber orientation variation”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 405-417, 2018.

[17] Heidari, M. Salimi-Majd, D. and Mohammadi, B., “Failure analysis of composite wing adhesive joints using 3D cohesive interface element”, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 31-40, 2015.

[18] Heidari-Rarani, M., Shokrieh, M. and  Camanho, P., “Finite Element Modeling of Mode I Delamination Growth in Laminated Dcb Specimens with R-Curve Effects“ Composites Part B: Engineering, Vol. 45, No. 1, pp. 897-903, 2013.

[19] Farrokhabadi, A. and Naghdi Nasab, M., “Micromechanical study of fibre- matrix debonding and matrix cracking using cohesive zone model and extended finite element method”, In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 1, pp. 21-30, 2016.

[20] Mohammadi, B. Salimi-Majd, D. and Ali-Bakhshi, M. H., “Analysis of composite skin/stringer debonding and failure under static loading using cohesive zone model”, In Persian, Modares Mechanical Engineering, Vol. 14, No. 10, pp. 17-25, 2014.

[21] Tafreshi, A., “Instability of Delaminated Composite Cylindrical Shells under Combined Axial Compression and Bending“ Composite structures, Vol. 82, No. 3, pp. 422-433, 2008.

[22] Hur, S.-H., Son, H.-J., Kweon, J.-H. and  Choi, J.-H., “Postbuckling of Composite Cylinders under External Hydrostatic Pressure“ Composite Structures, Vol. 86, No. 1-3, pp. 114-124, 2008.

[23] Truong, V.-H., Nguyen, K.-H., Park, S.-S. and  Kweon, J.-H., “Failure Load Analysis of C-Shaped Composite Beams Using a Cohesive Zone Model“ Composite Structures, Vol. 184, pp. 581-590, 2018.

[24] Shariati, M. and Allah-Baksh, H. R., “Numerical and experimental analysis of buckling and postbuckling of semi-spherical steel shells”, In Persian, Journal of Computational Applied Mechanics, Vol. 44, No. 1, pp. 37-48, 2011.

[25] Taheri Behrooz, F. Omidi, M. and Mehrdad Shokrieh, M., “, Experimental and numerical examination of the effect of geometrical imperfection on buckling load in axially compressed composites cylinder with and without cutout”, In Persian, Modares Mechanical Engineering, Vol. 16, No. 6, pp. 367-377, 2016.

[26] Dugdale, D. S., “Yielding of Steel Sheets Containing Slits“ Journal of the Mechanics and Physics of Solids, Vol. 8, No. 2, pp. 100-104, 1960.

[27] Benzeggagh, M. and  Kenane, M., “Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus“ Composites science and technology, Vol. 56, No. 4, pp. 439-449, 1996.