نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه تفرش، تفرش، ایران

2 استادیار، مهندسی مکانیک، دانشگاه تفرش، تفرش ، ایران

3 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه تفرش، تفرش ، ایران

10.22068/jstc.2018.78185.1408

چکیده

لولههای کامپوزیتی در طول استقرار در محل یا کارکرد، ممکن است تحت بارهای ضربهای قرار گیرند. بارهای ضربهای می‌توانند در اثر سقوط اجسام، به وجود آمده و آسیبهای داخلی قابل توجهی را ایجاد کنند که موجب کاهش شدید مقاومت باقیمانده لایهها در لولههای کامپوزیتی میشود. در این پژوهش، پارامترهای موثری نظیر ضخامت لوله، انرژی ضربه و قطر داخلی بر رفتار لوله‌های کامپوزیتی تک‌جداره تحت بارگذاری ضربه‌ای و آسیب‌های ناشی از این بارگذاری، به صورت عددی و با استفاده از نرم افزار ال‌اس‌داینا مورد مطالعه و بررسی قرار گرفته است. به این منظورلوله های کامپوزیتی با استفاده از المان 3D Solid 164 و مدل ماده CODAM مدل سازی شده و تحت بارگذاری ضربه‌ای سرعت پایین قرار داده شد. به منظور صحت سنجی داده مدل سازی و نتایج عددی، بعضی از نتایج عددی با نتایج تجربی مقایسه گردید. برای ساخت نمونه تجربی از سخت کننده اف ۲۰۵، رزین ایپون ۸۲۸ و الیاف ۴۰۰ گرمی شیشه استفاده گردید. بررسی نتایج نشان داد نتایج عددی همخوانی خوبی با نتایج تجربی دارد. بررسی نتایج تحلیل عددی نشان داد که با افزایش قطر داخلی شبب نمودار تغییری نمی‌کند به عبارت دیگر با افزایش قطر استحکام نمونه افزایش و علاوه بر آن مقاومت نمونه در برابر ضربه هم افزایش پیدا می‌کند. همچنین با افزایش تعداد لایه‌ها در ساختار نمونه‌ کامپوزیتی، سطح نیروی متوسط نمودار نیرو-جابه‌جایی بالاتر می‌رود که نشان‌دهنده افزایش مقاومت نمونه، ‌در برابر بار ضربه‌ای وارد شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Numerical Investigation of the Parameters Affecting on the Composite Tubes Response under Axial Impact

نویسندگان [English]

  • nabi rezaei golshan 1
  • Mohammad Hossein Pol Pol 2
  • omid Najafzade Asl 3

1 Department of Mechanical Engineering, Tafresh University, Tafresh, Iran

2 Department of Mechanical Engineering, Tafresh University, Tafresh, Iran

3 Department of Mechanical Engineering, Tafresh University, Tafresh, Iran

چکیده [English]

There is possibility of impact loading on composite tubes while they are being placed or operated. Impact loads can be caused by the objects falls and they are able to make considerable internal damages that decrease residual resistance of layers in composite tubes. In the present study, effective parameters such as tube thickness, impact energy and inner diameter on single-wall tubes behavior under impacting and its consequent damages have been studied numerically, using LS-dyna software. Therefore, composite tubes have been modeled using 3D Solid 164 element and CODAM material model and they have been impact loaded with low velocity. In order to validate the numerical results and modeling, some of the numerical results have been compared with experimental data. An experimental sample of F205 hardener, Epon 828 resin and 400 g/m2 glass fiber was used to make the test sample. There is a reasonable good agreement between experimental and numerical results. Result discussion showed that there are no changes in diagram slope with increase in inner diameter. In other words sample strength and its resistance to impact are increased with growing in inner diameter. Furthermore, mean force level of force-displacement diagram goes up with increase in number of layers in composite sample structure which indicates an increase in sample resistance to impact.

کلیدواژه‌ها [English]

  • Comosite tube
  • Impact peroperties
  • Drop wieght & low velocity impact

[1] Sadeghi, Mohammad, and Mohammad Hossein Pol., “Experimental investigation of the effect of the addition of carbon nanotubes on the quasi-static punch shear penetration of the laminated glass/epoxy composite”, Modares Mech Eng, 15,416-424, 2015.(in Persian)

[2] Pol, M. H., Liaghat, G. H., & Hajiarazi, F., “Effect of nanoclay on ballistic behavior of woven fabric composites: Experimental investigation”, Journal of Composite Materials, 47(13), 1563-1573, 2013.(in Persian)

[3] Sadeghi, Mohammad, and Mohammad Hossein Pol., “Experimental studies on the punch shear characterization of glass/epoxy/CNTs laminate nanocomposites”, Polymer Composites, POLYM COMPOS, 47: 1563–1573, 2017.

[4] Sadeghi, Mohammad, and Mohammad Hossein Pol., “Investigation of behaviors of glass/epoxy laminate composites reinforced with carbon nanotubes under quasi-static punch shear loading”, Journal of Sandwich Structures & Materials, 1099636217719223, 2017.

[5] Rahimi Sharbaf, H. Rahimi, G .H. and Liaghat, G. H., “Experimental study of behavior of filament winding composite pipes with liner using glass fibers and silica nanoparticles under impact loading”, Journal of Science and Technology of Composites, Vol. 3, No. 4, pp. 311-320, 2017. (in Persian)

[6] Pol, Mohammad Hossein, and G. H. Liaghat., “Studies on the mechanical properties of composites reinforced with nanoparticles”, Polymer Composites, 38.1: 205-212, 2017. (in Persian)

[7] Islamic Farsani, R, Shahrabi Farahani.A., “Investigating the flexural behavior of lattice composite reinforced with multi-wall carbon nanotubes”, Composite Science and Technology 4 (1): 101-108,2017.(in Persian)

[8] Kim, S. W., Kim, E. H., Jeong, M. S., & Lee, I., “Damage evaluation and strain monitoring for composite cylinders using tin-coated FBG sensors under low-velocity impacts”, Composites Part B: Engineering, 74, 13-22, 2015.

[9]  Nouri, Mohammad Damghani, and Hossein Hatami. “Experimental and numerical study of the effect of longitudinal reinforcements on cylindrical and conical absorbers under impact loading.” Indian Journal of Science and Technology 7, No. 2 ,: 199-210,2014.

[10] Chiu, L. N., Falzon, B. G., Ruan, D., Xu, S., Thomson, R. S., Chen, B., & Yan, W., “Crush responses of composite cylinder under quasi-static and dynamic loading”, Composite Structures 131: 90-98, 2015.

[11] Mahdi, E. and T. A. Sebaey., “An experimental investigation into crushing behavior of radially stiffened GFRP composite tubes”, Thin-Walled Structures 76: 8-13,2014.

[12] Hatami, H., M. Shokri Rad, and A. Ghodsbin Jahromi. “A theoretical analysis of the energy absorption response of expanded metal tubes under impact loads ” International Journal of Impact Engineering 109 : 224-239,2017.

[13] Jahromi, A. Ghodsbin, and H. Hatami. “Energy absorption performance on multilayer expanded metal tubes under axial impact ” Thin-Walled Structures 116 : 1-11,2017.

[14] Zhang, P., Gui, L. J., Fan, Z. J., Yu, Q., & Li, Z. K., “Finite element modeling of the quasi-static axial crushing of braided composite tubes”, Computational Materials Science 73: 146-153,2015.

[15] Huang, J., & Wang, X., “Numerical and experimental investigations on the axial crushing response of composite tubes”, Composite Structures, Vol. 91, No. 2, pp: 222-228, 2009.

[16] Ma, J., & Yan, Y., “Quasi-static and dynamic experiment investigations on the crashworthiness response of composite tubes”, Polym Compos;34(37):1099,2013.

[17] Han, H., Taheri, F., Pegg, N., & Lu, Y., “A numerical study on the axial crushing response of hybrid pultruded and ±45° braided tubes”, Composite Structures, Volume 80, Issue 2, Pages 253-264, 2007.

[18] David, M., & Johnson, A. F., “Effect of strain rate on the failure mechanisms and energy absorption in polymer composite elements under axial loading”, Composite Structures, Vol. 122, pp: 430-439, 2015.

[19] Ansari, M. M., & Chakrabarti, A., “Impact behavior of FRP composite plate under low to hyper velocity impact", Composites Part B: Engineering 95(Supplement C): 462-474,2016.

[20] Hatami, H., and M. Damghani Nouri. “Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities ” Latin American Journal of Solids and Structures Vol, 12, No. 10 ,pp:1950-1971,2015.

[21] McGregor, C. J., Vaziri, R., Poursartip, A., & Xiao, X., “Simulation of progressive damage development in braided composite tubes under axial compression”, Composites Part A: Applied Science and Manufacturing Vol. 38, No. 11: 2247-2259,2007.

[22] Xiao, X., McGregor, C., Vaziri, R., & Poursartip, A., “Progress in braided composite tube crush simulation”, International Journal of Impact Engineering 36(5): 711-719,2009.

 [23] Mehrabani Yeganeh, E., Liaghat, G.H., Pol M.H., “Experimental investigation of quasi-static perforation on laminated glass epoxy composites by indenters with different geometries”, InPersian, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 185-193, 2015.(in Persian فارسی)

[24] Sevkat, E., Liaw, B., Delale, F., & Raju, B. B., “Drop-weight impact of plain-woven hybrid glass–graphite/toughened epoxy composites”, Composites Part A: Applied Science and Manufacturing 40(8): 1090-1110,2009.

[25] Kaw, Autar K. Mechanics of composite materials. CRC press, 2005.‏

[26] Flanagan, D. P. and L. M. Taylor., “An accurate numerical algorithm for stress integration with finite rotations”, Computer Methods in Applied Mechanics and Engineering 62(3): 305-320,1987