نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی عمران، دانشگاه اصفهان، اصفهان ، ایران

2 دانشیار، مهندسی عمران، دانشگاه اصفهان، اصفهان، ایران

3 استادیار، مهندسی عمران، دانشگاه اصفهان، اصفهان، ایران

10.22068/jstc.2018.82716.1423

چکیده

در این پژوهش با استفاده از معادلات حاکم بر ورق نیمه‌ضخیم کامپوزیت ویسکوالاستیک بر مبنای نظریه تغییر شکل برشی مرتبه اول، تحت بار درون و خارج صفحه تغییر شکل حداکثر و بار بحرانی کمانشی در طول زمان محاسبه شده است. ویژگی‌های مکانیکی ماده ویسکوالاستیک با استفاده از بیان مدول آسودگی در فرم سری پرونی، به صورت خطی درنظر گرفته شده است. روابط متشکله به فرم چندجمله‌ای در حوزه لاپلاس-کارسون بیان شده‌اند. همچنین از تقریب ایلوشین و تبدیل معکوس لاپلاس-کارسون برای بازگرداندن پاسخ‌ این معادلات به حوزه زمان کمک گرفته شده است. نهایتاً برای حل معادلات حاکم به ازای مقادیر مختلف زمان از روش توابع پایه‌نمایی تعمیم یافته استفاده شده و نمودار تاریخچه زمانی خیز حداکثر و بار کمانشی بحرانی برای ورق ویسکوالاستیک به ازای شرایط مرزی مختلف رسم شده است و نتایج خمش و کمانش ورق مفصلی با منابع ارائه شده در پیشینه مقایسه شده‌اند. همچنین با بررسی ورق‌های دارای شرایط مرزی دو طرف مفصل-دو طرف گیردار و چهار طرف گیردار تحت بارگذاری عرضی و نیز درون صفحه، اثر تغییر شرایط مرزی مورد بررسی قرار گرفت. همچنین برای نمایش توانایی روش در حل شرایط مرزی متنوع، چند نوع شرط مرزی دیگر که روش‌های تحلیلی و نیمه‌تحلیلی قادر به حل آن‌ها نیستند نیز مورد بررسی قرار گرفته است. در تمامی موارد، روش پیشنهادی کارایی بهتری نسبت به سایر روش‌ها نشان می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Bending and buckling solution of composite viscoelastic plate using the generalized exponential basis function method

نویسندگان [English]

  • Arash Palizvan 1
  • Farshid Mossaiby 2
  • Hossein Amoushahi 3

1 Civil Engineering Department, University of Isfahan, Isfahan, Iran

2 Civil Engineering Department, University of Isfahan, Isfahan, Iran

3 Civil Engineering Department, University of Isfahan, Isfahan, Iran

چکیده [English]

In this study, we employ first-order shear deformation theory to calculate maximum deformation and critical buckling load of moderately thick viscoelastic composite plates. These quantities are calculated over time under in-plane and out of plane loadings. The mechanical properties of the viscoelastic material are assumed linearly by expressing the modulus of relaxation in the form of the Prony series. Constitutive equations are expressed as polynomials in the Laplace-Carson domain. Also, the Illyushin’s approximation and inverse Laplace-Carson methods have been used for calculating the response of these relations in the time domain. Finally, the method of generalized exponential basis functions is used to solve the governing equations for different values of time. Finally, the method of generalized exponential basis functions is used to solve the governing equations for different time values. The time-history of maximum deflection and critical buckling load are presented for the plates with different boundary conditions. The results of bending and buckling of the simply-supported plates are compared with the existing literature. Plates with two edges simply-supported and other edges fixed as well as those with all edges fixed are considered under transverse and in-plane loading, to investigate the effect of changing boundary conditions. Several problems with different boundary conditions are considered which many other analytical and semi analytical methods are unable to handle. In all cases the proposed method has been able to outperform the other methods.

کلیدواژه‌ها [English]

  • viscoelastic plate
  • generalized exponential basis functions
  • plate bending
  • plate buckling
  • Illyushin’s approximation method

 

[1] Amoushahi, H., and Azhari, M., “Static Analysis and Buckling of Viscoelastic Plates by a Fully Discretized Nonlinear Finite Strip Method Using Bubble Functions”, Composite Structures, Vol. 100, pp. 205-217, 2013.

[2]    Allam, M. N. M., Zenkour, A. M. and El-Mekawy, H. F. , “Bending Response of Inhomogeneous Fiber-Reinforced Viscoelastic Sandwich Plates”, Acta Mechanica, Vol. 209, pp. 231-248, 2010.

[3]    Zenkour, A. M., “Buckling of Fiber-Reinforced Viscoelastic Composite Plates Using Various Plate Theories”, Journal of Engineering Mathematics, Vol. 50, pp. 75-93, 2004.

[4]    Jafari, N., Azhari, M. and Heidarpour, A., “Local Buckling of Thin and Moderately Thick Variable Thickness Viscoelastic Composite Plates”, Journal of Structural Engineering, Vol. 40, pp. 783–800, 2011.

[5]    Jafari, N., Azhari, M. and Heidarpour, A., “Local Buckling of Rectangular Viscoelastic Composite Plates”, Mechanics of Advanced Materials and Structures, Vol. 21, pp. 263-272, 2014.

[6]    Falahatgar, S. R., “Creep Buckling Analysis  of Rectangular Viscoelastic Thic Plate by Pseudo-Transient Finite Element Method”, Modares Mechanical Engineering, Vol. 13, pp. 132-142, 2014. (in Persianفارسی )

[7]    Eshmatov, B. K. h., “Nonlinear Vibrations and Dynamic Stability of Viscoelastic Orthotropic Rectangular Plates”, Journal of Sound and Vibration, Vol. 300, pp. 709-726, 2007.

[8]    Safari, M., and Biglari, H., “Frequency dependent damped vibration of composite sandwich beam with viscoelastic and transverse flexible core based on GHM method”, Journal of science and technology of composites, Vol. 3, pp. 397-408, 2017. (in Persianفارسی )

 [9]   Atluri, S. N., and Zhu, T., “A New Meshless Local Petrov-Galerkin (Mlpg) Approach in Computational Mechanics”, Computational Mechanics, Vol. 22, pp. 117-127, 1998.

[10]   Onãte, E., Perazzo, F., and Miquel, J., “A Finite Point Method for Elasticity Problems”, Computers & Structures Vol. 79, pp. 2151-2163, 2001.

[11]   Lu, G., Wu, YL., and Ding, H., “Meshfree Weak-Strong (Mws) Form Method and Its Application to Incompressible Flow Problems”, International Journal for Numerical Methods in Fluids, Vol. 46, pp. 1025–1047, 2004.

[12]   Boroomand, B., Soghrati, S., and Movahedian, B., “Exponential Basis Functions in Solution of Static and Time Harmonic Elastic Problems in a Meshless Style”, International Journal for Numerical Methods in Engineering, Vol. 81, pp. 971-1018, 2010.

[13]   Mossaiby, F., Ghaderian, M., and Rossi, R., “Implementation of a Generalized Exponential Basis Functions Method for Linear and Non-Linear Problems”, International Journal for Numerical Methods in Engineering, Vol. 105, pp. 221-240, 2015.

[14]   Nopour, H., Ataabadi, A. K., and Shokrieh, M. M., “Buckling of composite plate made of curvilinear fiber with linear and nonlinear fiber orientation variation”, Journal of science and technology of composites, Vol. 4, pp. 405-417, 2018. (in Persianفارسی )

[15]   Mossaiby, F., Bahonar, M.J., and Asadi, A., “Solving Time-Dependent Problems Using the Generalized Exponential Basis Functions Method”, Modares Mechanical Engineering, Vol. 17, pp. 271-280, 2017. (in Persianفارسی )

[16]   Jafari, N., and Azhari, M., “Stability analysis of arbitrarily shaped moderately thick viscoelastic plates using Laplace–Carson transformation and a simple hp cloud method”, Mechanics of Time-Dependent Materials, Vol. 21, pp. 365-381, 2017.