نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 استادیار، مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

10.22068/jstc.2018.83722.1428

چکیده

هدف از این تحقیق، تعیین پارامترهای بهینه فرآیندی از قبیل پلی اتیلن ترفتالات بازیافتی (rPET)، سازگارکننده و درصد چوب در ماده مرکب چوب پلاستیک با زمینه PP/HDPE/rPET به منظور بیشینه کردن استحکام مخصوص (نسبت استحکام به چگالی) با در نظر گرفتن مدول کششی، انرژی ضربه و میزان جذب آب به عنوان قیود، می-باشد. برای این منظور، نمونه‌های چوب پلاستیک شامل rPET به میزان 0، 15، 25 و 35 درصد رزین (phr)، سازگارکننده به میزان 4، 8 و 12 phr و درصد چوب به میزان 30 و 40 درصد وزنی تهیه شد. آزمون‌های تجربی به منظور تعیین استحکام کششی، مدول کششی، انرژی ضربه، چگالی، و میزان جذب آب انجام شد. از روش سطح پاسخ (RSM) برای ایجاد مدل‌های ریاضی بین پارامترهای ورودی (میزان rPET، سازگارکننده و درصد چوب) و پارامترهای پاسخ (استحکام کششی، چگالی، مدول کششی، میزان جذب آب و انرژی ضربه) استفاده شد. آنالیز واریانس (ANOVA) برای تعیین درجه اهمیت مدل و هر یک از پارامترهای ورودی بر پارامترهای خروجی استفاده شد. کد الگوریتم ژنتیک برای تعیین شرایط بهینه مقید اجرا شد. استحکام مخصوص به عنوان تابع اصلی برای الگوریتم ژنتیک در نظر گرفته شده و مدول کششی، انرژی ضربه و میزان جذب آب به عنوان قیود تابع اصلی درنظر گرفته شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of the physical and mechanical properties of Wood plastic composites based on high density polyethylene/ polypropylene/recycled poly (ethylene terephthalate): part Ⅱ, Constrained Optimization

نویسندگان [English]

  • Ali-reza Maleki Khorasgani 1
  • Hamzeh Shahrajabian 2

1 Department of Mechanical Engineering, Islamic Azad University, Najafabad branch, Najafabad, Iran

2 Department of Mechanical Engineering, Islamic Azad University, Najafabad branch, Najafabad, Iran

چکیده [English]

The purpose of this study was to determine optimal process parameters such as recycled PET (RP), compatibilizer (COM), and wood flour (W) in HDPE/rPET/wood composites to maximize specified strength (the ratio of tensile strength to density) by consideration of water absorption (WA), tensile modulus (M), and impact energy (IE) as the constraints. In this regards, the wood composites samples were prepared with various contents of rPET (0, 15, 25, and 35 phr), MAPE as a compatibilizer (4, 8, and 12 phr), and wood flour (30 and 40 % wt.). The experimental tests were carried out to determine tensile strength (TS), tensile modulus, impact energy, density (ρ), and water absorption. Response surface methodology (RSM) was used to create the mathematical models between input parameters (RP, COM, W) and responses (TS, ρ, WA, M, and IE). The analysis of variance (ANOVA) was done to determine the significance of the model and each input parameter. Genetic algorithm (GA) code was performed to determine optimum condition. Specific strength formed the main function for GA, and water absorption, tensile modulus, and impact energy constituted the constraints of the function.

کلیدواژه‌ها [English]

  • Constrained optimization
  • HDPE/rPET/wood composites
  • Response surface methodology
  • genetic algorithm
[1] Ashori, A. and  Bahreini, Z., “Evaluation of Calotropis Gigantea as a Promising Raw Material for Fiber-Reinforced Composite“ Journal of Composite Materials, Vol. 43, No. 11, pp. 1297-1304, 2009.
[2] Al-Maadeed, M., Shabana, Y. M. and  Khanam, P. N., “Processing, Characterization and Modeling of Recycled Polypropylene/Glass Fibre/Wood Flour Composites“ Materials & Design, Vol. 58, pp. 374-380, 2014.
[3] Bajracharya, R. M., Manalo, A. C., Karunasena, W. and  Lau, K.-t., “An Overview of Mechanical Properties and Durability of Glass-Fibre Reinforced Recycled Mixed Plastic Waste Composites“ Materials & Design (1980-2015), Vol. 62, pp. 98-112, 2014.
[4] Nourbakhsh, A. and  Ashori, A., “Wood Plastic Composites from Agro-Waste Materials: Analysis of Mechanical Properties“ Bioresource technology, Vol. 101, No. 7, pp. 2525-2528, 2010.
[5] Welle, F., “Twenty Years of Pet Bottle to Bottle Recycling—an Overview“ Resources, Conservation and Recycling, Vol. 55, No. 11, pp. 865-875, 2011.
[6] Ge, Z., Huang, D., Sun, R. and  Gao, Z., “Properties of Plastic Mortar Made with Recycled Polyethylene Terephthalate“ Construction and Building Materials, Vol. 73, pp. 682-687, 2014.
[7] Lei, Y. and  Wu, Q., “Wood Plastic Composites Based on Microfibrillar Blends of High Density Polyethylene/Poly (Ethylene Terephthalate)“ Bioresource technology, Vol. 101, No. 10, pp. 3665-3671, 2010.
[8] Rahman, K. S., Islam, M. N., Rahman, M. M., Hannan, M. O., Dungani, R. and  Khalil, H. A., “Flat-Pressed Wood Plastic Composites from Sawdust and Recycled Polyethylene Terephthalate (Pet): Physical and Mechanical Properties“ SpringerPlus, Vol. 2, No. 1, pp. 629, 2013.
[9] Lei, Y. and  Wu, Q., “High Density Polyethylene and Poly (Ethylene Terephthalate) in Situ Sub-Micro-Fibril Blends as a Matrix for Wood Plastic Composites“ Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 1, pp. 73-78, 2012.
[10] Shahrajabian, H., and Maleki, A.R., “Investigation of the Physical and Mechanical Properties of Wood Plastic Composites Based on High Density Polyethylene/ Polypropylene/Recycled Poly (ethylene terephthalate)” In Persian, Journal of Science and Technology of Composites, Vol. *, No. *, pp. *-*, **.
[11] Soury, E., Behravesh, A., Esfahani, E. R. and  Zolfaghari, A., “Design, Optimization and Manufacturing of Wood–Plastic Composite Pallet“ Materials & Design, Vol. 30, No. 10, pp. 4183-4191, 2009.
[12] Jafari, M. and  Rohani, A., “Optimization of Perforated Composite Plates under Tensile Stress Using Genetic Algorithm“ Journal of Composite Materials, Vol. 50, No. 20, pp. 2773-2781, 2016.
[13] Shah, P., Halls, V., Zheng, J. and  Batra, R., “Optimal Cure Cycle Parameters for Minimizing Residual Stresses in Fiber-Reinforced Polymer Composite Laminates“ Journal of Composite Materials, Vol. 0, No. 0, pp. 0021998317714317.
[14] Shahbazi karami, J., Sheikhi, M.M., Manafi, D., and Chaechi, O., “Optimization of Internal Pressure and Axial Feed in Metal composite Al-Cu Tubes Hydroforming Process with Genetic Algorithm” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 3, pp. 275-282, 2017.
[15]   Mojabi, Sh.S., and Kheirikhah, M.M., “Modeling and Intelligent Control of Vibration of Cantilever Composite Plate Embedded with Shape Memory Alloy Wires” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 363-374, 2018.
[16]   Shokrieh, M.M., Damirchiloo, S., and Salamat-talab, M., “Determination of Cohesive Zone Oarameters in Mode Idelamination Growth of a Double Cantilever Beam Specimen Using Inverse Method” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 1, pp. 83-90, 2017.
[17]   Bhowmik, S. and  Ray, A., “Prediction and Optimization of Process Parameters of Green Composites in Awjm Process Using Response Surface Methodology“ The International Journal of Advanced Manufacturing Technology, Vol. 87, No. 5-8, pp. 1359-1370, 2016.
[18]   Vahdatazad, N., Ebrahimi, S., and Liaghat Gh., “Oblique Crashworthiness Optimization and Sensitivity Analysis of Tapered Sandwich Columns” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 1, pp. 25-34, 2017.
[19]   Rao, S., Sethi, A., Das, A. K., Mandal, N., Kiran, P., Ghosh, R., Dixit, A. and  Mandal, A., “Fiber Laser Cutting of Cfrp Composites and Process Optimization through Response Surface Methodology“ Materials and Manufacturing Processes, pp. 1-10, 2017.
[20]   Shahrajabian, H. and  Farahnakian, M., “Modeling and Multi-Constrained Optimization in Drilling Process of Carbon Fiber Reinforced Epoxy Composite“ International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 10, pp. 1829-1837, October 01, 2013.
[21]         Deb, K., “An Efficient Constraint Handling Method for Genetic  Algorithms“ Computer methods in applied mechanics and engineering, Vol. 186, No. 2, pp. 311-338, 2000.