نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مکانیک، دانشگاه فنی و مهندسی گلپایگان، گلپایگان، ایران

2 استاد، مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران

10.22068/jstc.2018.91728.1463

چکیده

در این تحقیق تحلیل استاتیکی و دینامیکی بال هواپیما ساخته شده از مواد مرکب، به روش تحلیلی بررسی می‌شود. بال به صورت تیر جدار نازک یکسرگیردار با سـطح مقطـع بـسته‌ و دارای لایه‌چینی سـختی محیطـی نامتقـارن CAS، مدلسازی شده است. در مدل تیر اثرات غیرکلاسیک مثل تنش برشی، قید واپیچش، مدل پیچشی غیریکنواخت و غیر ایزوتروپ بودن ماده در نظر گرفته می‌شود. معادلات حاکم با استفاده از اصل هامیلتون توسعه یافته به دست می‌آیند و بر اساس روش گالرکین توسعه یافته حل می‌شوند. نتایج حاصل از آنالیز از تطابق خوبی با داده‌های تجربی و نتایج تحلیل عددی برخوردار است. در این مقاله برای اولین بار اثرات تغییرات خطی و پیوسته زاویه الیاف در طول تیر جدار نازک کامپوزیتی که منجر به سفتی متغیر در سازه می‌شود، مورد بررسی و تحلیل قرار می‌گیرد. برای این منظور از دو تعریف مسیر با تغییرات خطی زاویه الیاف و مسیر با انحنای ثابت استفاده می‌شود. بر مبنای نتایج تحلیل، فرکانس طبیعی و کوپلینگ خمش-پیچش وابسته به زاویه الیاف می‌باشد و استفاده از الیاف خمیده با تغییر پیوسته زاویه الیاف در طول تیر، امکان استفاده بهینه از خواص کامپوزیت و افزایش فضای طراحی نسبت به بال معمولی با الیاف مستقیم را فراهم می‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Static and dynamic analysis of composite thin walled beam with curvilinear fiber

نویسندگان [English]

  • Zahra Zamani Miandashti 1
  • Hasan Haddadpour 2

1 School of Mechanical Engineering, Golpayegan University of Technology, Golpayegan, Iran

2 School of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

چکیده [English]

In this study, the static and dynamic analysis of composite wing is investigated using analytical method. The wing is modeled as a cantilevered thin walled beam with a single-cell closed cross section and the circumferentially asymmetric stiffness (CAS) configuration. The non-classical effects such as transverse shear, warping restraint, rotary inertia, nonuniform torsional model and material anisotropy are considered in the beam model. The governing equations were derived by means of the extended Hamilton’s principle and are solved based on the extended Galerkin’s method. From the validation process, the obtained results are in good agreement with the numerical results and experimental data. In this paper, a linear spanwise variation of the fiber orientation along the thin-walled beam span resulting in a variable-stiffness structure is investigated for the first time. Therefore, two fiber path definitions will be used with linear fiber orientation variation and with constant curvature of the fiber path. Numerical results indicate that eigenfrequencies and bending-torsion couplings depend on fiber angle, resulting improvements of wings with curvilinear fiber over conventional, straight ones through the variation of fiber angle along the beam span and increase of the design space.

کلیدواژه‌ها [English]

  • Thin walled composite beam
  • Aircraft wing
  • Curvilinear fiber
  • Non-classical effect
[1] Tatting, B., “Analysis and Design of Variable Stiffness Composite Sylinders,” PhD thesis, Virginia Polytechnic Institute and State University, USA, 1998.
[2] Hyer, M., Charette, R., “Use of Curvilinear Fiber Format in Composite Structure Design,” In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 30th Structures, Structural Dynamics and Materials Conference, Mobile, AL, pp. 2137–2145, 1989. Also in AIAA Journal, Vol. 29, No. 6, 1011–1015, 1991.
[3] Hyer, M., Lee, H., “The Use of Curvilinear Fiber Format to Improve Buckling Resistance of Composite Plates with Central Circular Holes,” Composite Structure, Vol. 18, pp. 239–261, 1991.
[4] Gurdal, Z., Olmedo, R., “In-plane Response of Laminates with Spatially Varying Fiber Orientations: Variable Stiffness Concept,” AIAA Journal, Vol. 31, No. 4, pp. 751–8, 1993.
[5] Olmedo, R., Gurdal, Z., “Buckling Response of Laminates with Spatially Varying Fiber Orientations,” In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics and Materials Conference, La Jola, CA, Paper No. 1567, 1993.
[6] Wu, K.C., Gurdal, Z., “Thermal Testing of Tow-placed Variable Stiffness Panels,” In: Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, Seattle, WA, Paper No. 1190, 2001.
[7] Tatting, B., Gurdal, Z., Wu K.C., “Tow-placement Technology and Fabrication Issues for Laminated Composite Structures,” In: Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material (SDM) Conference, Austin, TX, Paper No. AIAA 2005-2017, 2005.
[8] Gurdal, Z., Tatting, B., Wu, K., “Variable Stiffness Composite Panels: Effect of Variation on the In-plane and Buckling Response,” Composites: Part A, Vol. 39, pp. 911–922, 2008.
[9] Lopes, C.S., Gurdal, Z., Camanho, P.P., “Variable-Stiffness Composite Panels: Buckling and First-ply Failure Improvements Over Straight-Fibre Laminates,” Computers and Structures, Vol. 86, pp. 897–907, 2008.
[10] Haddadpour, H., Zamani, Z., “Curvilinear Fiber Optimization Tool for Aeroelastic Design of Composite Wings,” Journal of Fluids and Structures, Vol. 33, pp. 180–190, 2012.
[11] Zamani, H., Haddadpour, M. R., Ghazavi, “Curvilinear Fiber Optimization Tool for Design Thin Walled Beams,” Thin-Walled Structures, Vol. 49, pp. 448–454, 2011.
[12] Librescu, L., Meirovitch, L., Song, O., “Refined Structural Modeling for Enhancing Vibrations and Aeroelastic Characteristics of Composite Aircraft Wings,” Recherche Aerospatiale, Vol. 1, pp. 23–35, 1996.
 [13] Librescu, L., Song, O., “Thin-Walled Composite Beams Theory and Application,” Springer Science and Business Media, Berlin, 2006.
[14] Qin, Z., Librescu, L., “On a Shear-Deformable Theory of Anisotropic Thin-Walled Beams: Further Contribution and Validations,” Composite Structures, Vol. 56, pp. 345–358, 2002.
[15] Blom, A., Setoodeh, S., Hol, J., Gurdal, Z., “Design of Variable-Stiffness Conical Shells for Maximum Fundamental Eigenfrequency,” Computers and Structures, Vol. 86, pp. 870–878, 2008.
[16] Seresta, O., Gurdal, Z, Adams, D., Watson, L., “Optimal Design of Composite Wing Structures with Blended Laminates,” Composites: Part B, Vol. 38, pp. 469–48, 2007.
[17] Chandra, R., Stemple, A.D., Chopra, I., “Thin-Walled Composite Beams Under Bending Torsional and Extensional Loads,” Journal of Aircraft, Vol. 27, No. 7, pp. 619–626, 1990.
[18] Kim, C., White, SR., “Thick-Walled Composite Beam Theory Including 3-d Elastic Effects and Torsional Warping,” International Journal of Solids and Structures, Vol. 34, No. 31–32, pp. 4237–4259, 1997.
[19] Shadmehri, F., Haddadpour, H., Kouchakzadeh, M.A., “Flexural–Torsional Behavior of Thin-Walled Composite Beams with Closed Cross-Section,” Thin-Walled Structures, Vol. 45, pp. 699–705, 2007.
[20] Moravej Barzani, H., Amoozgar, M., Shahverdi, H., “Flutter Instability of Aircraft Swept Wings by Using Fully Intrinsic Equations”, In Persian, Amirkabir Journal of Mechanical Engineering, Vol. 49, No. 4, pp. 275-278, 2018.
[21] Jamshidi, S., Dardel, M., Pashaei, M., “Investigating the Effects of Ionic Polymer Metal Composite Patches on Aeroelastic Characteristics of a Cantilever Wing in Supersonic Flow,” Scientia Iranica, Vol. 23, No. 2, pp. 575-587, 2016.
[22] Pourshamsi, H., Mazidi, A., Fazelzadeh, S. A., “Flutter Analysis of an Aircraft Wing Carrying, Elastically, an External Store,” In Persian, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 49-58, 2015.
[23] Azimi, S.M.H., Mazidi, A., Azadi, M., “Active Flutter Control of a Swept Wing with an Engine by Using Piezoelectric Actuators,” In Persian, Amirkabir Journal of Mechanical Engineering, (DOI): 10.22060/MEJ.2018.13088.5532.
[24] Maleeke, H., Moeenfard, H., “Vibration Suppression of MR Sandwich Beams Based on Fuzzy Logic,” In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 4, pp. 359-368, 2016.
[25] Shaker, M., Mohammad Nabi, S., Bahrami, S., “Optimization of Piezoelectric Fibers in FG Panel with PFRC Layers Using Genetic Algorithms,” In Persian, Vol. 42, No. 2, pp. 279-290, 2017.
[26] Zarei, M., Rahimi, G.H., “Free Vibration Analysis of Grid Stiffened Composite Conical Shells,” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 1, pp. 1-8, 2017.
[27] Rahmani, B., Naghmehsanj, M.R., “Robust Vibration Control of a Functionally Graded Beam with a Variable Cross Section,” In Persian, Journal of Science and Technology of Composites,” Vol. 2, No. 2, pp. 17-30, 2015.
[28] Mehrdad Shokrieh, M., Ghaja, M., Salamattalab, M., Madoliat, R., “Progressive Damage Modeling of Laminated Composites by Considering Simultaneous Effects of Interlaminar and Intralaminar Damage Mechanisms,” In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 1-8, 2015.
[29] Heidari, M., Salimi-Majd, D., Mohammadi, B., “Failure Analysis of Composite Wing Adhesive Joints Using 3D Cohesive Interface Element”, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 31-40, 2015.
[30] Taheri-Behrooz, F., Mahdavizade, S. M. J., Gholami, M. J., “Micromechanics of Stress Transfer Through the Interphase in Pull Out Test of Fiber Through the Resin”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 3, pp. 283-294, 2017.