نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی مواد، دانشگاه صنعتی سهند، تبریز، ایران

2 کارشناس ارشد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

چکیده

کامپوزیت‌های زمینه فلزی دسته‌ای از مواد می‌باشند که دارای کاربردهای وسیع و گوناگونی از قبیل ساختمانی، سایشی و گرمایی می‌باشند. این نوع کامپوزیت‌ها نسبت به نقطه مقابل خود یعنی فلز پایه کاربردهای دمایی، استحکام، سفتی، هدایت حرارتی، مقاومت به سایش، مقاومت خزشی و پایداری ابعادی بهتری از خود نشان می‌دهند. در این پژوهش به بررسی روش‌های ساخت کامپوزیت‌های زمینه آلومینیمی تقویت شده با ذرات سرامیکی به‌ویژه فرآیندهای تغییر شکل پلاستیک شدید مبتنی بر نورد پرداخته شده است. تمرکز اصلی این پژوهش، بررسی خواص ریزساختاری، مکانیکی و مکانیزم‌های حاکم بر این نوع کامپوزیت‌ها که با دو روش نورد تجمعی و نورد تجمعی متقاطع تولید شده‌اند است. نتایج پژوهش‌های انجام شده نشان داد که در پاس‌های ابتدایی کامپوزیت‌های فراوری شده دارای توزیع مناسبی از ذرات تقویت‌کننده نیستند ولی با افزایش پاس، توزیع ذرات بهبود یافته و ذرات تقویت‌کننده در جهات طولی و عرضی توزیع می‌شوند. استحکام کششی و ریزسختی تقریبا روال مشابهی دارند به گونه‌ای که رفته رفته با افزایش میزان کرنش اعمالی و بهبود توزیع ذرات هر دو افزایش می‌یابند اما ازدیاد طول در پاس‌های ابتدایی به سبب توزیع نامناسب ذرات، تخلخل و ذرات خوشه‌ای ابتدا افت و سپس با رفع این عیوب و توزیع مناسب بهبود می‌یابد. البته خواص مکانیکی و ریزساختاری در روش نورد تجمعی متقاطع مطلوب‌تر می‌باشد. همچنین مکانیزم‌های حاکم بر اصلاح ریزساختار در کامپوزیت‌های فرآوری شده با استفاده از فرآیندهای برپایه نورد، تشکیل حلقه‌ی اوروان، نقش ذرات تقویت‌کننده، اختلاف در ضریب انبساط حرارتی زمینه و تقویت‌کننده و غیره می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Review of mechanical and microstructural properties of aluminum matrix composites reinforced with ceramic particles produced by SPD processes

نویسندگان [English]

  • Moslem tayyebi 1
  • Davood Rahmatabadi 2
  • Ramin Hashemi 3

1 Department of Material Engineering, Sahand University of Technology, Tabriz, Iran

2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

Metal matrix composites are bunch of materials that have wide range of uses such as construction, abrasion, and heat. This type of composite exhibits better dimension than the base metal such as temperature applications, strength, rigidity, thermal conductivity, wear resistance, creep resistance and stability. In this study, the methods of producing aluminum composite reinforced with ceramic particles, especially the processes of sever plastic deformation, have been investigated. The main focus of this research is to study the microstructure, mechanical properties and mechanisms governing this type of composite produced by two ARB and cross CARB methods. The results of the research showed that in the initial passes of the processed composites there is no proper distribution of reinforcing particles but by increasing the number of passes, the particle distribution is improved and the reinforcing particles are distributed in longitudinal and transverse directions. Tensile strength and microhardness have the same trend which they gradually increased with increasing strain rates and improvement of particle distribution but elongation at first decreased in the initial passes due to the inappropriate distribution of the particles, porosity and cluster particles, and then improved with the elimination of these imperfections and distribution. However, the mechanical and microstructural properties of the CARB method are more favorable. Also, the governing mechanisms for microstructure modification in produced composites by rolling processes are the formation of the Orowan loop, role of reinforcing particles, difference in the coefficient of thermal expansion of the matrix and reinforcement, and so on.

کلیدواژه‌ها [English]

  • Metal Matrix Composite
  • sever plastic deformation
  • reinforced particles
  • microstructure and mechanical properties. governing mechanism

1-       

[1]  Alizadeh, M., “Processing of Al/B 4 C Composites by Cross-Roll Accumulative Roll Bonding“ Materials Letters, Vol. 64, No. 23, pp. 2641-2643, 2010.

[2]  Naseri, M., Hassani, A. and  Tajally, M., “An Alternative Method for Manufacturing Al/B 4 C/Sic Hybrid Composite Strips by Cross Accumulative Roll Bonding (Carb) Process“ Ceramics International, Vol. 41, No. 10, pp. 13461-13469, 2015.

[3]  Rahmatabadi, D., Hashemi, R., Mohammadi, B. and  Shojaee, T., “Experimental Evaluation of the Plane Stress Fracture Toughness for Ultra-Fine Grained Aluminum Specimens Prepared by Accumulative Roll Bonding Process“ Materials Science and Engineering: A.

[4]  Gopalakrishnan, S. and  Murugan, N., “Prediction of Tensile Strength of Friction Stir Welded Aluminium Matrix Tic P Particulate Reinforced Composite“ Materials & Design, Vol. 32, No. 1, pp. 462-467, 2011.

[5]  Abdizadeh, H. and  Baghchesara, M. A., “Investigation on Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy Based Zro 2 Particle Reinforced Metal-Matrix Composites“ Ceramics International, Vol. 39, No. 2, pp. 2045-2050, 2013.

[6]  Alizadeh, M. and  Paydar, M., “High-Strength Nanostructured Al/B 4 C Composite Processed by Cross-Roll Accumulative Roll Bonding“ Materials Science and Engineering: A, Vol. 538, pp. 14-19, 2012.

[7]  D. Rahmatabadi, R. Hashemi, Experimental Investigation of Formability of Aluminum Sheets Produced by Cold Roll Bonding Process Used Nakazima test, Modares Mechanical Engineering, Vol. 17, No. 3, pp. 451-454, 2017.

[8]  Alizadeh, M. and  Paydar, M., “Fabrication of Nanostructure Al/Sic P Composite by Accumulative Roll-Bonding (Arb) Process“ Journal of Alloys and Compounds, Vol. 492, No. 1, pp. 231-235, 2010.

[9]  Hashemi, M., Jamaati, R. and  Toroghinejad, M. R., “Microstructure and Mechanical Properties of Al/Sio 2 Composite Produced by Car Process“ Materials Science and Engineering: A, Vol. 532, pp. 275-281, 2012.

[10]         Alizadeh, M. and  Salahinejad, E., “A Comparative Study on Metal–Matrix Composites Fabricated by Conventional and Cross Accumulative Roll-Bonding Processes“ Journal of Alloys and Compounds, Vol. 620, pp. 180-184, 2015.

[11]         Saito, Y., Utsunomiya, H., Tsuji, N. and  Sakai, T., “Novel Ultra-High Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding (Arb) Process“ Acta materialia, Vol. 47, No. 2, pp. 579-583, 1999.

[12]         Jamaati, R. and  Toroghinejad, M. R., “Manufacturing of High-Strength Aluminum/Alumina Composite by Accumulative Roll Bonding“ Materials Science and Engineering: A, Vol. 527, No. 16, pp. 4146-4151, 2010.

[13]         Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T. and  Hong, R., “Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (Arb) Process“ Scripta materialia, Vol. 39, No. 9, pp. 1221-1227, 1998.

[14]         Kitazono, K., Sato, E. and  Kuribayashi, K., “Novel Manufacturing Process of Closed-Cell Aluminum Foam by Accumulative Roll-Bonding“ Scripta Materialia, Vol. 50, No. 4, pp. 495-498, 2//, 2004.

[15]         Hosseini, M., Yazdani, A. and  Manesh, H. D., “Al 5083/Sic P Composites Produced by Continual Annealing and Roll-Bonding“ Materials Science and Engineering: A, Vol. 585, pp. 415-421, 2013.

[16]         Alizadeh, M., “Comparison of Nanostructured Al/B 4 C Composite Produced by Arb and Al/B 4 C Composite Produced by Rrb Process“ Materials Science and Engineering: A, Vol. 528, No. 2, pp. 578-582, 2010.

[17]         Amirkhanlou, S., Ketabchi, M., Parvin, N., Khorsand, S. and  Bahrami, R., “Accumulative Press Bonding; a Novel Manufacturing Process of Nanostructured Metal Matrix Composites“ Materials & Design, Vol. 51, pp. 367-374, 10//, 2013.

[18]         Toroghinejad, M. R., Jamaati, R., Nooryan, A. and  Edris, H., “Hybrid Composites Produced by Anodizing and Accumulative Roll Bonding (Arb) Processes“ Ceramics International, Vol. 40, No. 7, Part A, pp. 10027-10035, 8//, 2014.

[19]         Akbari beni, H., Alizadeh, M., Ghaffari, M. and  Amini, R., “Investigation of Grain Refinement in Al/Al2o3/B4c Nano-Composite Produced by Arb“ Composites Part B: Engineering, Vol. 58, pp. 438-442, 3//, 2014.

[20]         Ahmadi, A., Toroghinejad, M. R. and  Najafizadeh, A., “Evaluation of Microstructure and Mechanical Properties of Al/Al2o3/Sic Hybrid Composite Fabricated by Accumulative Roll Bonding Process“ Materials & Design, Vol. 53, pp. 13-19, 1//, 2014.

[21]         Reihanian, M., Hadadian, F. K. and  Paydar, M. H., “Fabrication of Al–2 Vol% Al2o3/Sic Hybrid Composite Via Accumulative Roll Bonding (Arb): An Investigation of the Microstructure and Mechanical Properties“ Materials Science and Engineering: A, Vol. 607, pp. 188-196, 6/23/, 2014.

[22]         Naseri, M., Hassani, A. and  Tajally, M., “Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation“ Ceramics International, Vol. 41, No. 3, pp. 3952-3960, 2015.

[23]         Farajzadeh Dehkordi, H., Toroghinejad, M. R. and  Raeissi, K., “Fabrication of Al/Al2o3/Tic Hybrid Composite by Anodizing and Accumulative Roll Bonding Processes and Investigation of Its Microstructure and Mechanical Properties“ Materials Science and Engineering: A, Vol. 585, pp. 460-467, 11/15/, 2013.

[24]         Baker, A. A. B., “Composite Materials for Aircraft Structures“,  AIAA, 2004.

[25]         Chawla, N. and  Chawla, K., “Metal-Matrix Composites in Ground Transportation“ JOM Journal of the Minerals, Metals and Materials Society, Vol. 58, No. 11, pp. 67-70, 2006.

[26]         Torralba, J. M., da Costa, C. E. and  Velasco, F., “P/M Aluminum Matrix Composites: An Overview“ Journal of Materials Processing Technology, Vol. 133, No. 1, pp. 203-206, 2003/02/01/, 2003.

[27]         Shingu, P., Ishihara, K., Otsuki, A. and  Daigo, I., “Nano-Scaled Multi-Layered Bulk Materials Manufactured by Repeated Pressing and Rolling in the Cu–Fe System“ Materials Science and Engineering: A, Vol. 304, pp. 399-402, 2001.

[28]         Movchan, B. and  Lemkey, F., “Mechanical Properties of Fine-Crystalline Two-Phase Materials“ Materials Science and Engineering: A, Vol. 224, No. 1, pp. 136-145, 1997.

[29]         Pirgazi, H., Akbarzadeh, A., Petrov, R. and  Kestens, L., “Microstructure Evolution and Mechanical Properties of Aa1100 Aluminum Sheet Processed by Accumulative Roll Bonding“ Materials Science and Engineering: A, Vol. 497, No. 1, pp. 132-138, 2008.

[30]         Valiev, R. Z., Islamgaliev, R. K. and  Alexandrov, I. V., “Bulk Nanostructured Materials from Severe Plastic Deformation“ Progress in materials science, Vol. 45, No. 2, pp. 103-189, 2000.

[31]         Segal, V., “Materials Processing by Simple Shear“ Materials Science and Engineering: A, Vol. 197, No. 2, pp. 157-164, 1995.

[32]         Tsuji, N., Saito, Y., Lee, S. H. and  Minamino, Y., “Arb (Accumulative Roll‐Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials“ Advanced Engineering Materials, Vol. 5, No. 5, pp. 338-344, 2003.

[33]         Alizadeh, M., “Processing of Al/B4c Composites by Cross-Roll Accumulative Roll Bonding“ Materials Letters, Vol. 64, No. 23, pp. 2641-2643, 12/15/, 2010.

[34]         Amirkhanlou, S., Ketabchi, M., Parvin, N., Askarian, M. and  Carreño, F., “Achieving Ultrafine Grained and Homogeneous Aa1050/Zno Nanocomposite with Well-Developed High Angle Grain Boundaries through Accumulative Press Bonding“ Materials Science and Engineering: A, Vol. 627, pp. 374-380, 3/11/, 2015.

[35]         D. Rahmatabadi, M. Tayyebi, R. Hashemi, Investigation of Mechanical Properties, Fracturgeraphi and Microstructure of Layered Al/Cu Composite Produced by Cold Roll Bonding, journal of science and technology of composites, 2017.

[36]         Jamaati, R. and  Toroghinejad, M., “Cold Roll Bonding Bond Strengths: Review“ Materials Science and Technology, Vol. 27, No. 7, pp. 1101-1108, 2011.

[37]         D. Rahmatabadi, M. Tayyebi, R. Hashemi, B. Eghbali, Investigation of Mechanical Properties and Microstructure for Al/Cu/SiC Composite Produced by Cross Accumulative Roll Bonding Process, Modares Mechanical Engineering, Vol. 17, No. 7, pp. 180-184, 2017

[38]         Ruppert, M., Höppel, H. W. and  Göken, M., “Influence of Cross-Rolling on the Mechanical Properties of an Accumulative Roll Bonded Aluminum Alloy Aa6014“ Materials Science and Engineering: A, Vol. 597, pp. 122-127, 2014.

[39]         Dehsorkhi, R. N., Qods, F. and  Tajally, M., “Application of Continual Annealing and Roll Bonding (Car) Process for Manufacturing Al–Zn Multilayered Composites“ Materials Science and Engineering: A, Vol. 549, pp. 206-212, 7/15/, 2012.

[40]         Hosseini, M., Yazdani, A. and  Danesh Manesh, H., “Al 5083/Sicp Composites Produced by Continual Annealing and Roll-Bonding“ Materials Science and Engineering: A, Vol. 585, pp. 415-421, 11/15/, 2013.

[41]         Amirkhanlou, S., Askarian, M., Ketabchi, M., Azimi, N., Parvin, N. and  Carreño, F., “Gradual Formation of Nano/Ultrafine Structure under Accumulative Press Bonding (Apb) Process“ Materials Characterization, Vol. 109, pp. 57-65, 11//, 2015.

[42]         Amirkhanlou, S., Ketabchi, M., Parvin, N., Orozco-Caballero, A. and  Carreño, F., “Homogeneous and Ultrafine-Grained Metal Matrix Nanocomposite Achieved by Accumulative Press Bonding as a Novel Severe Plastic Deformation Process“ Scripta Materialia, Vol. 100, pp. 40-43, 4/15/, 2015.

[43]         Jamaati, R. and  Toroghinejad, M. R., “Fabrication of Mmc Strip by Crb Process“ Journal of Materials Engineering and Performance, Vol. 21, No. 6, pp. 859-864, June 01, 2012.

[44]         Jafarian, H., Habibi-Livar, J. and  Razavi, S. H., “Microstructure Evolution and Mechanical Properties in Ultrafine Grained Al/Tic Composite Fabricated by Accumulative Roll Bonding“ Composites Part B: Engineering, Vol. 77, pp. 84-92, 2015.

[45]         Naseri, M., Hassani, A. and  Tajally, M., “An Alternative Method for Manufacturing Al/B4c/Sic Hybrid Composite Strips by Cross Accumulative Roll Bonding (Carb) Process“ Ceramics International, Vol. 41, No. 10, Part A, pp. 13461-13469, 2015/12/01/, 2015.

[46]         Jamaati, R., Naseri, M. and  Toroghinejad, M. R., “Wear Behavior of Nanostructured Al/Al2o3 Composite Fabricated Via Accumulative Roll Bonding (Arb) Process“ Materials & Design, Vol. 59, pp. 540-549, 7//, 2014.

[47]         Jamaati, R., Amirkhanlou, S., Toroghinejad, M. R. and  Niroumand, B., “Comparison of the Microstructure and Mechanical Properties of as-Cast A356/Sic Mmc Processed by Arb and Car Methods“ Journal of materials engineering and performance, Vol. 21, No. 7, pp. 1249-1253, 2012.

[48]         Dehkordi, H. F., Toroghinejad, M. R. and  Raeissi, K., “Fabrication of Al/Al 2 O 3/Tic Hybrid Composite by Anodizing and Accumulative Roll Bonding Processes and Investigation of Its Microstructure and Mechanical Properties“ Materials Science and Engineering: A, Vol. 585, pp. 460-467, 2013.

[49]         Jamaati, R., Amirkhanlou, S., Toroghinejad, M. R. and  Niroumand, B., “Effect of Particle Size on Microstructure and Mechanical Properties of Composites Produced by Arb Process“ Materials Science and Engineering: A, Vol. 528, No. 4, pp. 2143-2148, 2011.

[50]         Shamanian, M., Mohammadnezhad, M., Asgari, H. and  Szpunar, J., “Fabrication and Characterization of Al–Al2o3–Zrc Composite Produced by Accumulative Roll Bonding (Arb) Process“ Journal of Alloys and Compounds, Vol. 618, pp. 19-26, 1/5/, 2015.

[51]         Christman, T., Needleman, A. and  Suresh, S., “An Experimental and Numerical Study of Deformation in Metal-Ceramic Composites“ Acta Metallurgica, Vol. 37, No. 11, pp. 3029-3050, 1989.

[52]         Reihanian, M., Bagherpour, E. and  Paydar, M., “Particle Distribution in Metal Matrix Composites Fabricated by Accumulative Roll Bonding“ Materials Science and Technology, Vol. 28, No. 1, pp. 103-108, 2012.

[53]         Reihanian, M., Bagherpour, E. and  Paydar, M., “On the Achievement of Uniform Particle Distribution in Metal Matrix Composites Fabricated by Accumulative Roll Bonding“ Materials Letters, Vol. 91, pp. 59-62, 2013.

[54]         Mehr, V. Y., Rezaeian, A. and  Toroghinejad, M. R., “Application of Accumulative Roll Bonding and Anodizing Process to Produce Al–Cu–Al 2 O 3 Composite“ Materials & Design, Vol. 70, pp. 53-59, 2015.

[55]         Mahdavian, M. M., Ghalandari, L. and  Reihanian, M., “Accumulative Roll Bonding of Multilayered Cu/Zn/Al: An Evaluation of Microstructure and Mechanical Properties“ Materials Science and Engineering: A, Vol. 579, pp. 99-107, 9/1/, 2013.

[56]         Shabani, A., Toroghinejad, M. R. and  Shafyei, A., “Fabrication of Al/Ni/Cu Composite by Accumulative Roll Bonding and Electroplating Processes and Investigation of Its Microstructure and Mechanical Properties“ Materials Science and Engineering: A, Vol. 558, pp. 386-393, 12/15/, 2012.

[57]         D. Rahmatabadi, R. Hashemi, Experimental Investigation of Fracture Surfaces and Mechanical Properties of AA1050 Aluminum Produced by Aaccumulative Roll Bonding Process, Modares Mechanical Engineering, Vol. 16, No. 10, pp. 305-312, 2016.

[58]         Rezayat, M., Akbarzadeh, A. and  Owhadi, A., “Production of High Strength Al–Al 2 O 3 Composite by Accumulative Roll Bonding“ Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 2, pp. 261-267, 2012.

[59]         D. Rahmatabadi, B. Mohammadi, R. Hashemi, T. Shojaee, Experimental Investigation of Plane Stress Fracture Toughness for Al/Cu/Al Multilayer Produced by Cold Roll Bonding Process, Modares Mechanical Engineering, Vol. 17, No. 5, pp. 166-174, 2017.

[60]         D. Rahmatabadi, R. H., “Experimental Evaluation of Forming Limit Diagram and Mechanical Properties of Nano/Ultra-Fine Grained Al Strips Fabricated by Accumulative Roll Bonding Process“ International Journal of Materials Research, 2017.

[61]         D. Rahmatabadi, R. Hashemi, B. Mohammadi, T. Shojaee, Experimental Investigation of Plane Stress Fracture Toughness for Two Layers of Aluminum Sheets Produced by Cold Roll Bonding Process, Modares Mechanical Engineering, Vol. 17, No. 2, pp. 101-108, 2017.

[62]         Naseri, M., Hassani, A. and  Tajally, M., “Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation“ Ceramics International, Vol. 41, No. 3, Part A, pp. 3952-3960, 2015/04/01/, 2015.

[63]         Alizadeh, M. and  Paydar, M. H., “High-Strength Nanostructured Al/B4c Composite Processed by Cross-Roll Accumulative Roll Bonding“ Materials Science and Engineering: A, Vol. 538, pp. 14-19, 3/15/, 2012.

[64]         Apps, P., Berta, M. and  Prangnell, P., “The Effect of Dispersoids on the Grain Refinement Mechanisms During Deformation of Aluminium Alloys to Ultra-High Strains“ Acta materialia, Vol. 53, No. 2, pp. 499-511, 2005.

[65]         Zhang, Z. and  Chen, D., “Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength“ Scripta Materialia, Vol. 54, No. 7, pp. 1321-1326, 2006.

[66]         Alizadeh, M., Ghaffari, M. and  Amini, R., “Properties of High Specific Strength Al–4wt.% Al 2 O 3/B 4 C Nano-Composite Produced by Accumulative Roll Bonding Process“ Materials & Design, Vol. 50, pp. 427-432, 2013.

[67]         Toroghinejad, M. R., Jamaati, R., Hoseini, M., Szpunar, J. A. and  Dutkiewicz, J., “Texture Evolution of Nanostructured Aluminum/Copper Composite Produced by the Accumulative Roll Bonding and Folding Process“ Metallurgical and Materials Transactions A, Vol. 44, No. 3, pp. 1587-1598, 2013.

[68]         Ardakani, M. R. K., Amirkhanlou, S. and  Khorsand, S., “Cross Accumulative Roll Bonding—a Novel Mechanical Technique for Significant Improvement of Stir-Cast Al/Al2o3 Nanocomposite Properties“ Materials Science and Engineering: A, Vol. 591, pp. 144-149, 1/3/, 2014.

[69]         Kamali Ardakani, M. R., Khorsand, S., Amirkhanlou, S. and  Javad Nayyeri, M., “Application of Compocasting and Cross Accumulative Roll Bonding Processes for Manufacturing High-Strength, Highly Uniform and Ultra-Fine Structured Al/Sicp Nanocomposite“ Materials Science and Engineering: A, Vol. 592, pp. 121-127, 1/13/, 2014.