نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشیار، مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشیار، گروه مهندسی مواد و متالورژی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

چکیده

در این تحقیق، با استفاده از دو سیم جوش مغزه دار حاوی پودر پایه Fe-B و Fe-B-C، عملیات روکش‌کاری سخت بر روی فولاد st37 به روش FCAW (جوشکاری قوسی توپودری)، طی سه فرایند تک پاسی، دو پاسی و سه پاسی انجام پذیرفت. نتایج نشان داد با افزایش تعداد پاس در هر دو سیم جوش، درصد بور منطقه جوش نیز از 3/2 تا 18/3 درصد وزنی افزایش می‌یابد که این امر را می‌توان به دلیل حضور بیشتر بور در مذاب جوش به دلیل افزایش حجم سیم جوش در هر پاس از فرایند جوشکاری دانست. همچنین بررسی‌های ریزساختاری نشان داد با استفاده از سیم جوش Fe-B فرایند جوشکاری تک پاسی منجر به ایجاد زمینه فریت و یوتکتیک α-Fe2B می‌گردد که در فرایند دو پاسی نسبت به فرایند تک پاسی جزایر فریتی کمتر شده و در عوض میزان یوتکتیک α-Fe2B افزایش می‌یابد. فرایند جوشکاری پاس سوم منجر به ایجاد ذرات اولیه Fe2B ستونی شکل و یوتکتیک α-Fe2B می‌گردد. حضور کربن در سیم جوش Fe-B-C باعث تشکیل جزایر پرلیتی در کنار ذرات اولیه Fe2B خواهد شد. همچنین در پاس سوم جوشکاری با هر دو سیم جوش، مقادیر بسیار کمی فاز FeB در اطراف فاز Fe2B اولیه تشکیل می‌شود. حضور ترکیب FeB را نیز می‌توان به دلیل جدایش عنصر بور در جوشکاری در طی انجماد غیر تعادلی دانست. نیز افزایش سختی بدست آمده را می توان به دلیل افزایش بور در اثر افزایش تعداد پاس های جوشکاری دانست.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Studying influence of adding carbon and boron amount on microstructure and hardness of iron – based hardfacing layer using Flux Cored Arc Welding

نویسندگان [English]

  • mohammadreza tavakoli shoushtari 1
  • Massoud goodarzi 2
  • hamed sabet 3

1 School of Metallurgy and Materials Engineering, Iran University of Science & Technology, Tehran, Iran

2 School of Metallurgy and Materials Engineering, Iran University of Science & Technology, Tehran, Iran

3 Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

چکیده [English]

In present investigation, hard claddings treatment was performed on st37 steel using two cored electrodes containing Fe-B and Fe-B-C powder-based by FCAW (Flux Cored Arc Welding) method during three stages of single pass, two-pass and three-pass welding process. Results indicated that the increasing of welding pass numbers for both welding electrode, boron percentage was improved from 2.3 to 3.18 wt. % at weld metal due to more presence of boron in liquid phase which caused volume increase of electrode at each welding pass. Microstructure observation results also expressed that the using of Fe-B electrode for single pass welding process caused to create a ferrite matrix and α-Fe2B eutectic; for two-pass welding process compared to single pass ferrite islands have been decreased, while the amount of α-Fe2B eutectic have been increased. Third pass of welding process caused to form α-Fe2B eutectic and primary particles of Fe2B which had columnar shape. Presence of carbon in Fe-B-C electrode will form pearlite islands beside primary Fe2B. Also, at third pass of welding process by both electrodes, very low amount of FeB phase would be formed around the Fe2B primary phase. Formation of FeB compound related to segregation of boron element during welding and non-equilibrium solidification. The increase in hardness can also be attributed to an increase in the amount of boron due to the increasing number of welding passes.

کلیدواژه‌ها [English]

  • flux-cored Arc welding
  • hardfacing
  • Fe-B
  • Microstructure
  • welding passes

 

[1]   Gou, J., Wang, Y., Sun, J., Li, X., “Bending strength and wear behavior of Fe-Cr-C-B hardfacing alloys with and without rare earth oxide nanoparticles”, Surface & Coatings Technology, Vol. 311, PP. 113-126, 2017.

[2]   Wang, Y., Gou, J., Chu, R., Zhen, D., Liu, S., “The effect of nano-additives containing rare earth oxides on sliding wear behavior of high chromium cast iron hardfacing alloys”, Tribology International, Vol. 103, PP.102–112, 2016.

[3]   Rovatti, L., Lemke, J.N., Emami, A., Stejskal, O., and Vedani, M., “Effects of V Addition on Microstructure and Hardness of Fe-C-B-Ni-V Hardfacing Alloys Cast on Steel Substrates”, Journal of Materials Engineering and Performance, Vol. 24, No. 12, PP. 4755–4763, 2015.

[4]   Yuksel N., Sahin S.,” Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys”, Materials and Design, Vol. 58, PP. 491–498, 2014.

[5]   Gou, J., Lu, P., Wang, Y., Liu, S., Zou, Z.,” Effect of nano-additives on microstructure, mechanical properties and wear behaviour of Fe–Cr–B hardfacing alloy”, Applied Surface Science, Vol. 360, PP. 849-857, 2016.

[6]   Lin, H., Ying, L., Jun, L., Binghong, L., “Microstructure and Mechanical Properties for TIG Welding Joint of High Boron Fe-Ti-B Alloy”, Rare Metal Materials and Engineering, Vol. 43, No. 2, PP.0283-0286, 2014.

[7]   Sabet, H., Khierandish, Sh., Mirdamadi, Sh., Goodarzi, M., “The Microstructure and Abrasive Wear Resistance of Fe–Cr–C Hardfacing Alloys with the Composition of Hypoeutectic, Eutectic, and Hypereutectic at Cr/C=6”, Tribology Letters, Vol. 44, PP. 237–245, 2011.

[8]   Correa, EO., Alcântara, NG., Valeriano, LC., Barbedo, ND., Chaves, RR., “The effect of microstructure on abrasive wear of a Fe–Cr–C–Nb hardfacing alloy deposited by the open arc welding process”, Surface & Coatings Technology, Vol. 276, PP. 479–484, 2015.

[9]   Eroglu, M., “Boride coatings on steel using shielded metal arc welding electrode: Microstructure and hardness”, Surface & Coatings Technology, Vol. 203, PP. 2229–2235, 2009.

[10] Gou, J., Wang, Y., Sun, Z., Li, X., “Study of work function and dry sliding wear behavior of Fe-based hardfacing alloys with and without nano rare earth oxides”, Journal of Alloys and Compounds, Vol. 713, PP. 255-265, 2017.

[11] Liu, D., Liu, R., Wei, Y., “Effects of titanium additive on microstructure and wear performance of iron-based slag-free self-shielded flux-cored wire”, Surface & Coatings Technology, Vol. 207, PP. 579–586, 2012.

[12] Kim, JH., Ko, KH., Noh, SD., Kim, GG., Kim, SJ., “The effect of boron on the abrasive wear behavior of austenitic Fe-based hardfacing alloys”, Wear, Vol. 267, PP. 1415–1419, 2009.

[13] Huang, Z., Xing, J., Lv, Li., “Effect of tungsten addition on the toughness and hardness of Fe2B in wear-resistant Fe–B–C cast alloy”, Materials Characterization, Vol. 75, PP. 63-68, 2013.

[14] Venugopal, K., Agrwal, M., “Evalution of arc sprayed coatings for erosion protection of tubes in atmospheric fluidized bed combustion (AFBC) boilers", Wear, Vol. 264, PP. 139–145, 2008.

[15] Bourithis, L., Papaefthymiou, S., Papadimitriou, GD., "Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties", Applied surface science, Vol. 200, PP. 203-218, 2002.