نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی پزشکی بایومواد، دانشگاه علم و صنعت ایران، تهران - ایران

2 استاد دانشگاه، مهندسی مواد، دانشگاه علم و صنعت ایران، تهران - ایران

3 دانشجوی کارشناسی ارشد، مهندسی پزشکی بایومواد، دانشگاه علم و صنعت ایران، تهران، ایران

4 کارشناس ارشد پژوهشی، دانشگاه علم و صنعت ایران، تهران - ایران

چکیده

هیدروکسی‬ آپاتیت به دلیل خواص زیست‬ سازگاری، زیست‬ فعالی و توانایی پیوند با استخوان، به منظور ترمیم و جایگزینی استخوان مورد توجه قرار گرفته است. این ماده باوجود داشتن خواص مکانیکی ضعیف، خواص بیولوژیکی منحصر به فردی از خود نشان می‌دهد. این موضوع باعث تمرکز بیشتر مطالعات در راستای بهبود خواص مکانیکی این ماده تا جایگزینی آن شده است. یکی از راه‬ های بهبود خواص هیدروکسی‬ آپاتیت به عنوان یک بیوسرامیک، تهیه کامپوزیت بر پایه هیدروکسی‬ آپاتیت است.
در این پژوهش از نایتینول به عنوان فاز تقویت کننده به منظور بهبود خواص مکانیکی هیدروکسی‬ آپاتیت استفاده شد. هیدروکسی‬ آپاتیت به روش سوزاندن استخوان گوساله، از منابع طبیعی تهیه شد و سپس کامپوزیت‬ های هیدروکسی‬ آپاتیت-نایتینول با 5، 10 و 15 درصد وزنی نایتینول به روش متالورژی پودر سنتز شدند. به منظور برررسی تحولات فازی رخ داده در کامپوزیت پس از زینتر و بررسی سطح مقطع شکست به ترتیب از آنالیز پراش پرتوی ایکس(XRD)، طیف سنجی پرتو فروسرخ (FTIR) و میکروسکوپ الکترونی روبشی(SEM) استفاده شد. سپس خواص مکانیکی نظیر استحکام فشاری و مدول الاستیک مورد بررسی قرار گرفت. نتایج نشان داد که کامپوزیت هیدروکسی‬ آپاتیت-10% نایتینول دارای شرایط مناسب و بهینه از نظر خواص مکانیکی نسبت به سایر ترکیبات در نظر گرفته شده، است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Nitinol Addition on the Mechanical properties and the Microstructure of Nactural Hydroxyapatite Obtained from Calf Femoral Bone

نویسندگان [English]

  • samaneh kamali 1
  • Alireza Khavandi 2
  • sepideh shemshad 3
  • elhamm malekmohammadi 4

1 Department of Material Engineering, Iran University of Science and Technology, Tehran, Iran

2 Department of Material Engineering, Iran University of Science and Technology, Tehran, Iran

3 Department of Material Engineering, Iran University of Science and Technology, Tehran, Iran

4 Department of Material Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

Hydroxyapatite have been studied intensively for bone repairing and replacement applications due to their biocompatibility, bioactivity and the ability to bond to bone. Despite the poor mechanical properties of hydroxyapatite, its unique biological properties leads to study improving its properties rather than completely replacing it with other biomaterials. One of the ways to improve the properties of hydroxyapatite as a bioceramic, is preparing composite based hydroxyapatite.
In this study, Nitinol was used as a reinforce phase in order to improve the mechanical properties of hydroxyapatite. Pure hydroxyapatite (HA) was obtained by the calcination of calf femoral bone.Then the hydroxyapatite composite reinforced with 5, 10 and 15 Wt% Nitinol was produced by powder metallurgy successfully. In order to examine changes occurring in the composite phase after sintering and fracture surface, XRD, FTIR and SEM were used, Respectively. Also, the compressive strength were measured to compare the bone properties.
The results showed that hydroxyapatite composite with 10% Nitinol has the sutable conditions. It also optimizes the mechanical properties compared to other compounds intended.

کلیدواژه‌ها [English]

  • Composite
  • Nitinol
  • Hydroxyapatite
  • Mechanical properties

 

[1]   Orlovskii,V. P. Komlev,V. S. and Barinov,S. M. “Hydroxyapatite and Hydroxyapatite-Based Ceramics,” Inorganic Materials, Vol. 38, No. 10, pp. 973–984, 2002.

[2]   Venkatesan,J. Lowe,B.Manivasagan, P. Kang,K. H. Chalisserry,E. P. Anil,S. Kim, D. G. and Kim, S. K. “Isolation and characterization of nano-hydroxyapatite from salmon fish bone, ” Materials (Basel). Vol. 8, No. 8, pp. 5426–5439, 2015.

[3]   Sopyan, I. Mel, M. Ramesh, S. and Khalid, K.A. “Porous hydroxyapatite for artificial bone applications,” Journal Science and Technology of Advanced Materials, Vol. 6996, No. pp. 1-10, 2016.

[4]   Niakan, A. Ramesh, S. Ganesan, P. and Tan, C. Purbolaksono, H. Chandran, and S. Ramesh, “Sintering behaviour of natural porous hydroxyapatite derived from bovine bone,” Ceramics International, Vol. 41, No. 1, pp. 3024–3029, 2015.

[5]   Jaffe,W. L. and Scott, D. F. “Current Concepts Review - Total Hip Arthroplasty with Hydroxyapatite-Coated Prostheses Current Concepts Review Total Hip Arthroplasty with Hydroxyapatite-Coated Prostheses,” Journal of Bone Joint Surg, Vol. 78, No. 12, pp. 1918–1934, 2011.

[6]   Ahn, E. S. Gleason, N. J. and Ying, J. Y. “The Effect of Zirconia Reinforcing Agents on the Microstructure and Mechanical Properties of Hydroxyapatite-Based Nanocomposites,” Journal of the American Society, Vol. 3379, No. 20132, pp. 3374–3379, 2005.

[7]   Gamal, G. A. “Effect of Iron Additives on the Microstructure of Hydroxyapatite,” Engineering, Technology & Applied Science & Research, Vol. 3, No. 6, pp. 532–539, 2013.

[8]   Miao, X. “Observation of microcracks formed in HA-316L composites,” Materials Letters, Vol. 57, No. 12, pp. 1848–1853, 2003.

[9]   Zhang,X. Gubbels, G. H. M. Terpstra, R. A. and Metselaar, R. “Toughening of calcium hydroxyapatite with silver particles,” Journal of Material Science,  Vol. 32, No. 1, pp. 235–243, 1997.

[10] Kim,H.L. Jung, G.Y. Ho, Y. J. Han, J.S. Park, Y.J. Kim,D.G. Zhang, M. and Kim,D.J. “Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering,” Material Science & Enineering. C, Vol. 54, No. 1, pp. 20 –25, 2015.

[11] Mobasherpour,I. Hashjin, M. S. Toosi, S. S. R. and Kamachali,R. D. “Effect of the addition ZrO 2 – Al 2 O 3 on nanocrystalline hydroxyapatite bending strength and fracture toughness,” Ceramics International, Vol. 35, No. 4, pp. 1569–1574, 2009.

[12] Chu, C. Xue, X. Zhu, J. and Yin, Z. “Fabrication and characterization of hydroxyapatite reinforced with 20 vol% Ti particles for use as hard tissue replacement,”Journal of Materials Science: Materials in Medicine. Vol. 17, No. 10, pp. 985–992, 2002.

[13] Arifin, A. Sulong, A.B. Muhamad, N. Syarif, J. and  Ramli, M.I. “Material processing of hydroxyapatite and titanium alloy ( HA / Ti ) composite as implant materials using powder metallurgy : A review,” Materials & Design., Vol. 55, No. 5, pp. 165–175, 2014.

[14] Sealy, C. H. Fu, M. P. Guo, Y. B. and Wei, X. T. “Austenite–martensite phase transformation of biomedical Nitinol by ball burnishing,” Austenite–martensite phase transformation of biomedical Nitinol by ball burnishing. Vol. 214, No. 12, pp. 3122–3130, 2014.

[15] Duerig,T. Pelton,A. and Stöckel,D. “An overview of nitinol medical applications,” Material Science & Enineering. A, Vol. 273–275, No. 2,  pp. 149–160, 1999.

[16] Greiner, C. Oppenheimer,S. M. and Dunand, D. C. “High strength, low stiffness, porous NiTi with superelastic properties,” Acta Biomater. Vol. 1, No. 6, pp. 705–716, 2005.

[17] Niespodziana, K. Jurczyk, K. and Jurczyk, M.“Synthesis of Niti Based Nanocomposites Reinforced by Ha Addition,” Arch. Metall. Mater., Vol. 61, No. 2, pp. 577–580, 2016.

[18] Metsger, D. S. Rieger,M. R. and Foreman, D. W. “Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic,” Journal of Materials Science: Materials in Medicine. Vol. 10, No. 1, pp. 9–17, 1999.

[19] Heidari, F. Razavi, M. Ghaedi, M. and Forooghi, M. “Investigation of mechanical properties of natural hydroxyapatite samples prepared by cold isostatic pressing method,” Journal of Alloys and Compounds. Vol. 693, No. 5, pp. 1150–1156, 2017.

[20] Gheisari, H. Karamian, E. and Abdellahi, M. “A novel hydroxyapatite – Hardystonite nanocomposite ceramic,” Ceramics International. Vol. 41, No. 4, pp. 5967–5975, 2015.