نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

3 دانشجوی دکتری، مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

چکیده

فوم‌های پلیمری نانوکامپوزیتی به دلیل خواص ویژه‌ای که دارند امروزه به صورت گسترده‌ای مورد توجه مجامع علمی و صنعتی قرار گرفته‌اند. فوم‌های با ساختار سلول باز قابلیت بالایی در جذب صدا، آب، ضربه و رطوبت دارند. از ضخامت دیواره سلولی می‌توان به عنوان پارامتری برای بررسی راهکارهای دست‌یابی به ساختار سلول باز استفاده کرد. در تحقیق حاضر به بررسی خواص ساختاری و مکانیکی فوم‌های نانوکامپوزیتی پلی پروپیلن/نانواکسید آهن در فرآیند فوم توده‌ای به وسیله‌ی گاز کربن دی اکسید پرداخته شده است. پارامترهای درصد وزنی نانواکسید آهن، دما و زمان فوم کردن به عنوان پارامترهای متغیر و ضخامت دیواره سلولی و استحکام به ضربه ویژه به عنوان پارامترهای خروجی در نظر گرفته شدند. طراحی آزمایش‌ها مطابق آرایه متعامد L9 تاگوچی صورت پذیرفت و از تحلیل‌های سیگنال به نویز و آنالیز واریانس بهره گرفته شد. تصاویر مربوط به میکروسکوپ الکترونی روبشی نشان داد که ساختار میکروسلولی مناسبی با چگالی سلولی از مرتبه 109 و 1010 سلول در سانتی متر مکعب حاصل شد. نتایج نشان داد که دما موثرترین پارامتر بر روی خواص فوم‌های نانوکامپوزیتی بود بصورتیکه با کاهش دما، ضخامت دیواره سلولی کاهش و استحکام به ضربه ویژه افزایش می‌یابد. همچنین نتایج مشخص ساخت که افزودن 4 درصد وزنی نانواکسید آهن باعث افزایش استحکام به ضربه ویژه به میزان 20% خواهد شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of cell wall thickness and impact strength of polypropylene microcellular nanocomposite foams produced by batch process

نویسندگان [English]

  • Mahsa Daryadel 1
  • Taher Azdast 2
  • Rezgar Hasanzadeh 3
  • Siamak Molani 1

1 Department of Mechanical Engineering, Urmia University, Urmia, Iran

2 Department of Mechanical Engineering, Urmia University, , Iran

3 Department of Mechanical Engineering, Urmia University, , Iran

چکیده [English]

Nowadays polymeric nanocomposite foams have attracted the attentions in both academic and industrial communities due to their advantages. Foams with open-cell structures have high ability to absorb sound, water, impact and moisture. The cell wall thickness can be used as a parameter to evaluate the approaches for achieving open-cell structures. In this study the structural and mechanical properties of polypropylene/nano Fe2O3 nanocomposite foams were investigated in batch foaming process using CO2 gas as blowing agent. Nano Fe2O3 content, foaming temperature and foaming time were considered as variable parameters. Design of experiments using L9 orthogonal array of Taguchi approach was used for studying cell wall thickness and specific impact strength. The signal to noise ratio and analysis of variance were carried out. The scanning electron microscope results showed that appropriate microcellular structures with cell density of 109 and 1010 cell/cm3 were achieved. The results indicated that foaming temperature was the most effective parameter on the properties of nanocomposite foams. Decreasing foaming temperature leads to decreasing cell wall thickness and increasing specific impact strength. Also, the results illuminated that specific impact strength was enhanced almost 20% by increasing 4 wt% of nano Fe2O3.

کلیدواژه‌ها [English]

  • Microcellular nanocomposite
  • Open-cell structure
  • Cell wall thickness
  • Batch foam
  • Nano Fe2O3
1-        
[1]  Daniel, G., “Composite Materials: Design and Applications”, CRC press, 2014.
[2] Eungkee Lee, R. Hasanzadeh, R. Azdast, T., “A Multi-Criteria Decision Analysis on Injection Moulding of Polymeric Microcellular Nanocomposite Foams Containing Multi-Walled Carbon Nanotubes”, Plastics, Rubber and Composites, Vol. 46, No. 4, pp. 155-162, 2017.
[3] Mezghani, K. Farooqui, M. Furquan, S. Atieh, M., “Influence of Carbon Nanotube (CNT) on the Mechanical Properties of LLDPE/CNT Nanocomposite Fibers”, Materials Letters, Vol. 65, No. 23, pp. 3633-3635, 2011.
[4] Shishavan, S. Azdast, T. Ahmadi, S., “Investigation of the Effect of Nanoclay and Processing Parameters on the Tensile Strength and Hardness of Injection Molded Acrylonitrile Butadiene Styrene-Organoclay Nanocomposites”, Materials & Design, Vol. 58, pp. 527-534, 2014.
[5] Esmaili, P. Azdast, T. Doniavi, A. Hasanzadeh, R. Mamaghani, S. Lee, R., “Experimental Investigation of Mechanical Properties of Injection Polymeric Nanocomposites Containing Multi-Walled Carbon Nanotubes According to Design of Experiments”, Journal of Science and Technology of Composite, Vol. 2, No. 3, pp. 67-74, 2015. (In Persian)
[6] Gao, K. Dommelen, J. A. W. Geers, M. G. D., “Investigation of the Effects of the Microstructure on the Sound Absorption Performance of Polymer Foams Using a Computational Homogenization Approach”, European Journal of Mechanics-A/Solids, Vol. 61, pp. 330-344, 2017.
[7] Yetkin, S. Unal, H. Mimaroglu, A. Findik, F., “Influence of Process Parameters on the Mechanical and Foaming Properties of PP Polymer and PP/TALC/EPDM Composites”, Polymer-Plastics Technology and Engineering, Vol. 52, No. 5, pp. 433-439, 2013.
[8] Yetgin, S. Unal, H. Mimaroglu, A., “Influence of Foam Agent Content and Talc Filled Polypropylene Composite Foams”, Journal of Cellular Plastics, Vol. 50, No. 6, pp. 563-576, 2014.
[9] Mohammadian, Z. Rezaei, M. Azdast, T., “Microstructure, Physical, and Mechanical Properties of LDPE/UHMWPE Blend Foams: an Experimental Design Methodology”, Journal of Thermoplastic Composite Materials, Vol. 29, No. 9, pp. 1229-1260, 2016.
[10] Wee, D. Seong, DG. Youn, JR., “Processing of Microcellular Nanocomposite Foams by Using a Supercritical Fluid”, Fibers and Polymers, Vol. 5, No. 2, pp. 160-169, 2004.
[11] Dolomanova, V. Kumar, V. Pyrz, R. Madaleno, LAO. Jensen, AR. Rauhe, JCM., “Fabrication of Microcellular PP-MMT Nanocomposite Foams in a Sub-Critical CO2 Process”, Cellular Polymers, Vol. 31, No. 3, pp. 125-143, 2012.
[12] Chen, L. Goren, B. Ozisik, R. Schadler, L., “Controlling Bubble Density in MWNT/Polymer Nanocomposite Foams by MWNT Surface Modification”, Composites Science and Technology, Vol. 72, No. 2, pp. 190-196, 2012.
[13] Li, Q. Chen, L. Li, X. Zhang, J. Zhang, X. Zheng, K. Fang, F. Zhou, H. Tian, X., “Effect of Multi-Walled Carbon Nanotubes on Mechanical, Thermal and Electrical Properties of Phenolic Foam Via Insitu Polymerization”, Composites Part A: Applied Science and Manufacturing, Vol. 82, pp. 214-225, 2016.
[14] Azerag, B. Azdast, T. Doniavi, A. Shishavan, S. Lee, R., “Structural Properties of Batch Foamed Acrylonitrile Butadiene Styrene/Nanoclay Nanocomposites”, International Journal of Mechanical and Materials Engineering, Vol. 10, No. 1, p. 19, 2015.
[15] Hasanzadeh, R. Azdast, T. Doniavi, A. Esmaili, P. Mamaghani, S. Eungkee, L., “Experimental Investigation of Properties of Polymeric Nanocomposite Foams Containing Multi-Walled Carbon Nanotubes Using Taguchi Method”, Journal of Science and Technology of Composites, Vol. 2, No. 4, pp. 37-44, 2016. (In Persian)
[16] Doniavi, A. Babazadeh, S. Azdast, T. Hasanzadeh, R., “An Investigation on the Mechanical Properties of Friction Stir Welded Polycarbonate/Aluminium Oxide Nanocomposite Sheets”, Journal of Elastomers & Plastics, DOI: 0095244316674352, 2016.
[17] Modanloo, V. Hasanzadeh, R. Esmaili, R., “The Study of Deep Drawing of Brass-Steel Laminated Sheet Composite Using Taguchi Method”, International Journal of Engineering (IJE) TRANSACTIONS A: Basics, Vol. 29, No.1, pp. 103-108, 2016.
[18] Aghaie, A. Z. Rahimi, A. B. Akbarzadeh, A., “A General Optimized Geometry of Angled Ribs For Enhancing The Thermo-Hydraulic Behavior of a Solar Air Heater Channel–A Taguchi Approach”, Renewable Energy, Vol. 83, pp. 47-54, 2015.
[19] Lee, L. Zeng, C. Cao, X. Han, X. Shen, J. Xu, G., “Polymer Nanocomposite Foams”, Composites Science and Technology, Vol. 65, No. 15, pp. 2344-2363, 2005.
[20] Kong, W. Bao, J. Wang, J. Hu, G. Xu, Y. Zhao, L., “Preparation of Open-Cell Polymer Foams by CO2 Assisted Foaming of Polymer Blends”, Polymer, Vol. 90, pp. 331-341, 2016.
[21] Huang, H. Wang, J. Sun, X., “Improving of Cell Structure of Microcellular Foames Based on Polypropylene/High-Density Polyethylene Blends”, Journal of Cellular Plastics, Vol. 44, No. 1, pp. 69-85, 2008.
[22] Naguib, H. E. Park, C. B. Reichelt, N., “Fundamental Foaming Mechanisms Governing the Volume Expansion of Extruded Polypropylene Foams”, Journal of applied polymer science, Vol. 91, No. 4, pp. 2661-2668, 2004.
[23] Grignard, B. Thomassin, J. M. Gennen, S. Poussard, L. Bonnaud, L. Raquez, J. M. Dubois, P. Tran, M. P. Park, C. B. Jerome, C. Detrembleur, C., “CO2-Blown Microcellular Non-Isocyanate Polyurethane (NIPU) Foams: From Bio-And CO2-Sourced Monomers to Potentially Thermal Insulating Materials”, Green Chemistry, Vol. 18, No. 7, pp. 2206-2215, 2016.
[24] Xu, X., Park, C.B., Xu, D. and Pop‐Iliev, R., “Effects of Die Geometry on Cell Nucleation of PS Foams Blown with CO2”, Polymer Engineering & Science, Vol. 43, No. 7, pp.1378-1390, 2003.
[25] Zheng, W. G. Lee, Y. H. Park, C. B., “Use of Nanoparticles For Improving the Foaming Behaviors of Linear PP”, Journal of applied polymer science, Vol. 117, No. 5, pp. 2972-2979, 2010.
[26] Park, C. B. Behravesh, A. H. Venter, R. D., “Low Density Microcellular Foam Processing in Extrusion using CO2”, Polymer Engineering & Science, Vol. 38, No. 11, pp. 1812-1823, 1998.
[27] Naguib, H. E. Park, C. B. Panzer, U. Reichelt, N., “Strategies For Achieving Ultra Low‐Density Polypropylene Foams”, Polymer Engineering & Science, Vol. 42, No. 7, pp. 1481-1492, 2002.