نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی مواد، دانشگاه بوعلی سینا، همدان ، ایران

2 دانشجوی کارشناسی ارشد، مهندسی مواد، دانشگاه بوعلی سینا، همدان ،ایران

3 دانشجوی کارشناسی ارشد، مهندسی مواد، دانشگاه رازی، کرمانشاه، ایران

4 استادیار، مهندسی مواد، دانشگاه صنعتی همدان، همدان، ایران

چکیده

آلیاژ A356 یک آلیاژ ریختگی بوده که شامل آلومینیم، سیلیسیم و منیزیم است. این آلیاژ دارای استحکام و شکل‌پذیری خوب به همراه خواص ریختگی عالی، مقاومت به خوردگی بالا و سیالیت خوب است. این آلیاژ به صورت گسترده‌ای در صنایع ماشین‌سازی، هواپیماسازی، صنایع دفاعی و به ویژه صنایع خودروسازی به جای اجزاء فولادی استفاده می‌گردد. اما مقاومت به سایش کم این آلیاژها باعث شده که استفاده از آن‌ها محدود گردد. فرآوری اصطکاکی اغتشاشی یک روش حالت جامد است که برای اصلاح سطح، بهبود خواص مکانیکی و تولید کامپوزیت استفاده می‌گردد. در این پژوهش با استفاده از فرآوری اصطکاکی اغتشاشی به اصلاح ریزساختار آلیاژ A356 و توسعه نانوکامپوزیت‌های سطحی A356/TiO2 و A356/TiO2/Gr پرداخته شده است. در ابتدا ترکیبی از سرعت‌های دورانی و پیشروی مختلف روی نمونه‌ها انجام شد تا نمونه بهینه با در نظر گرفتن نتایج ریزساختاری و خواص مکانیکی انتخاب شود و بهترین نتایج در سرعت دورانی rpm 900 و پیشروی mm/min 60 بدست آمد. از میکروسکوپ نوری و الکترونی روبشی، میکروسختی، سایش و نانوفرورونده برای مشخصه‌یابی سطح استفاده شد. بررسی ریزساختاری نشان داد که توزیع یکنواختی از ذرات تقویت کننده در سطح نانوکامپوزیت در منطقه اغتشاش وجود دارد. نتایج نشان داد که تشکیل نانوکامپوزیت سطحی منجر به بهبود خواص مکانیکی و رفتار سایشی آن می‌گردد. افزودن روانکار جامد گرافیت باعث بهبود خواص سایشی نانوکامپوزیت می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication and investigation of microstructutr and mechanical properties of A356-TiO2-Gr surface Hybrid nano composite by friction stir processing

نویسندگان [English]

  • Saeed Ahmadifard 1
  • Masoud Roknian 2
  • Fatemeh Khodaee 3
  • Akbar Heidarpour 4

1 Department of Material Engineering, Bu Ali Sina University, Hamedan, Iran

2 Department of Material Engineering, Bu Ali Sina University, Hamedan, Iran

3 Department of Material Engineering, Razi University, Kermanshah, Iran

4 Department of Metallurgy and Materials Engineering, Hamedan University of Technology, Hamedan, Ira

چکیده [English]

The A356 is a cast alloy which consist of aluminum, silicon and magnesium. This alloy has good strangth and ductility with excellent casting properties, high corrosion resistance and good fluidity. This alloy is wiedly used in the automotive industry, aircraft, defense industry and especially the automotive industry as a substitution of steel components. Poor wear resistance of the alloys is major limitation for their use. Friction stir processing (FSP) is a recognized surfacing technique as it overcomes the problems of fusion route surface modification methods. In this study, friction stir processing was utilized to incorporate TiO2 and graphite particles into the matrix of an A356 alloy to form surface hybrid nanocomposite. For fabrication of nanocomposite a constant tool rotation rate of 900 rpm and travel speed of 60 mm/min with a tool tilt angle of 3 degree was used. Keeping in view of the requirement for improving wear resistance of A356 alloy, friction stir processing was attempted for surface modification with TiO2 and graphite powders. SEM, metallography, hardness, nanoindentation and pin-on-disc wear testing were used for characterizing the surface of nanocomposite. Microstructural analysis showed a uniform distribution of reinforcement particles inside the nugget zone. The surface nanocomposite results in enhanced properties in mechanical properties and wear resistance compared to the behavior of the base metal. Addition of solid lubricant graphite improve tribological properties of the nanocomposite.

کلیدواژه‌ها [English]

  • Friction stir processing
  • A356 Al
  • Surface nano composites
  • Mechanical properties
  • Wear
[1] Zhang, D. and Zheng, L., "The Quench Sensitivity of Cast Al-7 Wtpct Si-0.4 Wtpct Mg Alloy" Metallurical Materials Transactiona A, Vol. 27, No. 12, pp. 3983-3994, 1996.
[2] Elshalakany, A. B. Osman, T. A. Khattab, A. and Azzam, B., "Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques" Journal of Nanomaterials, Vol. 20, No. 1, pp 1-14, 2014.
[3] Mishra, R. S. and Ma, Z. Y., "Friction Stir Welding and Processing" Materials Science and Engineering R, Vol. 50, No. 1-2, pp. 1-78, 2005.
[4]  Meng, C. Cui, H. C. Lu, G. and Tang, X. H., "Evolution Behavior of TiB2 Particles During Laser Welding on Aluminum Metal Matrix Composites Reinforced with Particles" Transactions of Nonferrous Metals Society of China, Vol. 23, No. 6, pp. 1543-1548, 2013.
[5] Liu, Q. Ke, L. Liu, F. Huang, C. and Xing, L., "Microstructure and Mechanical Property of Multiwalled Carbon Nanotubes Reinforced Aluminum Matrix Composites Fabricated by Friction Stir Processing" Materials and Design, Vol.  45, No. 1, pp. 343–348, 2013. 
[6] Yousefpour, H. and Akbari Mousavi, S. A. A., "Investigations on Microstructure, Wear Behavior and Corrosion Resistance of Brass/Graphite Composite Produced by Friction Stir Processing"  Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 253-260, 2016. (in Persianفارسی )
[7] Soleymani, S. Abdollah-zadeh, A. and Alidokht, S. A., "Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced by Friction Stir Processing" Wear, Vol. 278– 279, No. 1, pp. 41– 47, 2012.
[8] Shafiei-Zarghani, A. Kashani-Bozorg, A. F. and Zarei- Hanzaki, A., "Wear Assessment of Al/Al2O3 Nano-composite Surface Layer Produced Using Friction Stir Processing" Wear, Vol. 270, No. 5-6, pp. 403–412, 2011.  
[9] Kapoor, R. Kandasamy, K. Mishra, R. S. Baumann, J. A. and Grant, G., "Effect of Friction Stir Processing on the Tensile and Fatigue Behavior of a Cast A206 Alloy" Materials Science and Engineering A, Vol. 561, No. 1, pp. 159–166, 2013.
[10] Khodabakhshi, F. Simchi, A. Kokabi, A. H.  Sadeghahmadi, M. and Gerlich, A. P., "Reactive Friction Stir Processing of AA 5052–TiO2 Nanocomposite: Process Microstructure" mechanical characteristics, Materials Science and Technology, Vol. 31, No. 4, pp. 426-436, 2015.  
[11] Mishra, R. S. Mahoney, M. W. McFadden, S. X. Mara, N. A. and Mukherjee, A. K., "High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy" Scripta Materialia, Vol. 42, No. 2, pp. 163-168, 1999.    
[12] Mishra, R. S. Ma, Z. Y., and Charit, I., "Friction Stir processing: a Novel Technique for Fabrication of Surface Composite" Materials Science and Engineering A, Vol. 341, No. 1-2, pp. 307-310, 2003.
[13] Ni, D. R. Wang, J. J. Zhou, Z. N. and Ma, Z. Y., "Fabrication and Mechanical Properties of Bulk NiTip/Al Composites Prepared by Friction Stir Processing" Journal of Alloys and Compounds, Vol. 586, No. 1, pp. 368-374, 2014.
[14] Asadi, P. Faraji, G. and Besharati, M. K., "Producing of AZ91/SiC Composite by Friction Stir Processing (FSP) "  The InternationalJournal of Advanced Manufacturing Technology, Vol. 51, No. 1, pp. 247-260, 2010.
[15] Akramifard, H. R. Shamanian, M. Sabbaghian, M. and Esmailzadeh, M., "Microstructure and Mechanical Properties of Cu/SiC Metal Matrix Composite Fabricated via Friction Stir Processing" Materials and Design, Vol. 54, No. 1, pp. 838-844, 2014. 
[16] Li, B. Shen, Y. Luo, L. and Hu, W., "Fabrication of TiCp/Ti-6Al-4V Surface Composite via Friction Stir Processing (FSP): Process Optimization, Particle Dispersion-Refinement Behavior and Hardening Mechanism" Materials Science and Engineering A, Vol. 574, No. 1, pp. 75-85, 2013.
[17] Mazaheri, Y. Karimzadeh, F. and Enayati, M. H., "A Novel Technique for Development of A356/Al2O3 Surface Nanocomposite by Friction Stir Processing" Journal of Materials Processing Technology, Vol. 211, No. 10, pp. 1614-1619, 2011.
[18] Alidokht, S. A. Abdollah-zadeh, A. Soleymani, S. and Assadi, H., "Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing" Materials and Design, Vol. 32, No. 5, pp. 2727-2733, 2011.
[19] Ahmadifard, S. Kazemi, Sh. and Heidarpour, A., "Fabrication of Al5083/TiO2 Surface Composite by Friction Stir Process and Investigating its Microstructural, Mechanical and Wear Properties" Modares Mechanical Engineering, Vol. 15, No. 12, pp. 55-62, 2015. (in Persianفارسی ) 
[20] Bauri, R. Yadav, D. and Suhas, G., "Effect of Friction Stir Processing (FSP) on Microstructure and Properties of Al-TiC in Situ Composite" Materials Science and Engineering A, Vol. 528, No. 13-14, pp. 4732-4739, 2011.
[21] Ahmadifard, S. Shahin, N. Kazemi, Sh. Heidarpour, A. and Shirazi, A., "Fabrication of A5083/SiC Surface Composite by Friction stir Processing and its Characterization" Journal of Science and Technology of Composites", Vol. 2, No. 4, pp. 31-36, 2016. (in Persianفارسی )  
[22] Srinivasu, R. Sambasiva, R. A. Madhusudhan, R. G. and Srinivasa, R. K., "Friction Stir Surfacing of Cast A356 Aluminium-Silicon Alloy with Boro Carbide and Molybdenum Disulphide Powders" Defence Technology, Vol. 10, No. 2, pp. 1-7, 2014.  
[23] Hossieni, S. A. Ranjbar, K. Dehmolaei, R. and Amirani, A. R., "Fabrication of Al5083 Surface Composites Reinforced by CNTs and Cerium Oxide Nano Particles via Friction Stir Processing" Journal ofAlloys and Compounds, Vol. 662, No. 1, pp. 725-733, 2014.
[24] Shinoda, T. and Kawai, M., "Surface Modification by Novel Friction Thermomechanical Process of Aluminium Alloy Castings" Surface and coating Technology, Vol. 456, No. 9, pp. 170-179.  2003.
[25] Amouri, K. Amouri, J. Ahmadifard, S. Kazazi, M. and Kazemi, S., "Preparation and Characterization of A356 Composite Reinforced with SiC Nano and Microparticles by Stir Casting Method" Modares Mechanical Engineering, Vol. 16, No. 10, pp. 335-342, 2016. (in Persianفارسی )  
[26] Tjong, S. C., "Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties" Advanced Engineering Materials, Vol. 8, No. 1, pp. 639–652, 2007.
[27] Bauri, R. and Surapa, M. K., "Sliding Wear Behavior of Al-Li-SiCp Composites" Journal of Materials Engineering and Performance", Vol. 265, No. 11-12, pp. 1756-1766, 2008.
[28] Mostafapour, A. and Khandani, S. T., "Role of Hybrid Ratio in Microstructural, Mechanical and Sliding Wear Properties of the Al5083/Graphitep/Al2O3p a Surface Hybrid Nanocomposite Fabricated via Friction Stir Processing Method" Materials Science and Engineering A, Vol. 559, No. 1, pp. 549-557, 2013.
[29] Lashgari, H. R. Zangeneh, Sh. Shahmir, H. Saghafi, M. Emamy, M., "Heat Treatment Effect on the Microstructure, Tensile Properties and Dry Sliding Wear Behavior of A356–10%B4C Cast Composites" Materials and Design, Vol. 31, No. 9, pp. 4414–4422, 2010.