نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی عمران و محیط زیست، دانشگاه امیرکبیر، تهران، ایران

2 استاد، مهندسی عمران و محیط زیست، دانشگاه امیرکبیر، تهران، ایران

3 استاد، مهندسی هوافضا، دانشگاه امیرکبیر، تهران، ایران

چکیده

در این مقاله تغییرات مدول الاستیسیته و مقاومت نهایی چندلایه ها با استفاده از مدل های المان محدود شبیه سازی شده از نمونه های آزمایشگاهی برای چندلایه های کامپوزیتی از جنس شیشه/وینیل استر مورد آزمایش و بررسی واقع شد. با استفاده از مدل های المان محدود دارای المان های سه بعدی با قابلیت خرابی پیشرونده و همچنین با تعریف دقیق رابطه تماس بین تیر و تکیه گاه، تاثیر رفتار غیرخطی مواد و هندسه در رفتار خمشی تیرها شبیه سازی شد. در ابتدا آزمایشات کشش به منظور ملاحظه رفتار خرابی پیشرونده در چندلایه ها و تصدیق مدلسازی خرابی انجام شده و شبیه سازی گردید. در ادامه با اجرای تست های خمش سه نقطه ای و سپس شبیه سازی تیرها، تغییر مدول الاستیسیته خمشی با مقایسه نمودارهای بار-تغییرمکان بدست آمده از آزمایشات و مدل های المان محدود اندازه گیری شد. برای پیشگویی خرابی از معیارهای بر پایه کرنش به جای معیارهای بر پایه تنش استفاده شد. با داشتن کرنش های خرابی ثابت برای نمونه های کششی و خمشی و از طرفی تغییر مدول الاستیسیته برای لایه چینی های مختلف چندلایه ها، تغییر مقاومت نهایی تجربه شده برای نمونه ها تحت بار خمشی تعیین شد. با توجه به وابسته بودن تغییر مدول الاستیسیته چندلایه های کامپوزیتی به عملکرد فاز پلیمری ماده، این تغییر به عملکرد لایه های ˚90 در چندلایه های با لایه چینی های مختلف نسبت داده شد و در انتها نموداری برای تغییر مدول الاستیسیته لایه های ˚90 مربوط به لایه چینی های مختلف ارائه شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of variation in the mechanical properties of composite laminates using progressive failure analysis

نویسندگان [English]

  • Alireza Nazari 1
  • Mohammad Zaman Kabir 2
  • Hossein Hosseini Toudashki 3

1 Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

2 Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

3 Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran

چکیده [English]

In this paper, the performance of some glass/vinylester composite laminates was examined. Using 3D FE models for the specimens and progressive failure analysis of the models, an accurate simulation of the contact between the composite beam and the supports was implemented. Also the influence of material and geometric non-linearity on the flexural load carrying behavior of the beams was investigated. At the first, the tension experiments were conducted for observation of the progressive failure behavior in the composite laminates and verification of the failure model. In the following, by implementing the three-point-bending tests and then simulation of the composite beam specimens, varaition of the flexural modulus was investigated by the aid of comparing the load-deflection curves obtained by the experiments and the FE models. For prediction of the failure, the strain-based failure criteria were used rather than the stress-based failure criteria. Since the failure strains were identical for tensile and bending specimens, variation of the flexural modulus led in variation of the flexural strength. As variation of the flexural modulus was considered dependent on the performance of the polymeric phase of the composite laminates, this variation was attributed to the performance of the 90˚ layers.

کلیدواژه‌ها [English]

  • Composite beam
  • Flexural Strength
  • Flexural modulus
  • Progressive failure
1-         
[1] Bullock, R. E., “Strength Ratios of Composite Materials in Flexure and in Tension” Journal of Composite Materials, Vol. 8, pp. 200-206, 1974.
[2] Whitney, J. M. and Knight, M., “The Relationship between Tensile Strength and Flexure Strength in Fiber-Reinforced Composites” Experimental Mechanics, Vol. 20(6), pp. 211-216, 1980.
[3] Ullah, H. Harland, A. R. Lucas, T. et al., “Finite Element Modelling of Bending of CFRP Laminates: Multiple Delaminations” Compsite Materials Science, Vol. 52, pp. 147–156, 2012.
[4] Cattell, M. K. and Kibble, K. A., “Determination of the Relationship Between Strength and Test Method for Glass Fibre Epoxy Composite Coupons Using Weibull Analysis” Materials and Design, Vol. 22, pp. 245-250, 2001.
[5] Zweben, C., “Is There a Size Effect in Composite Materials and Structures?” Composites, Vol. 25, pp. 451-454, 1994.
[6]  Smith, D. L. Wardle M. W. Zweben, C., “Test Methods for Fiber Tensile Strength, Composite Flexural Modulus and Properties of Fabric-Reinforced Laminates” In: SW Tsai (ed) Composite Materials: Testing and Design (Fifth Conference), ASTM STP 674, West Conshohocken: American Society for Testing and Materials, pp. 228-262, 1979.
[7] Tolf, G. and Clarin, P., “Comparison between Flexural and Tensile Modulus of Fibre Composites” Fibre Science Technolgy, Vol. 21, pp. 319-326, 1984.
[8] Roopa, T. S. Murthy, H. N. Sudarshan, K., et al. “Mechanical Properties of Vinylester/Glass and Polyester/Glass Composites Fabricated by Resin Transfer Molding and Hand Lay-up” Journal of Vinyl Additive Technolgy, Doi: 11.1002/vnl.21393, 2014.
[9] Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM, Designation: D790–07, 2007.
[10] Echaabi, J. Trochu, F. Pham, X. T., et al. “Theoretical and Experimental Investigation of Failure and Damage Progression of Graphite-Epoxy Composites in Flexural Bending Test” Journal of Reinforced Plastics and Composites, Vol. 15, pp. 740–755, 1996.
[11] Tehrani-Dehkordi, M., “Numerical modeling of bending behavior of intra-ply hybrid composites using finite element method” Journal of Science and Technology of Composites, Vol. 2, No. 4, pp. 59-66, 2016. (In Persian)
[12] Huang, Z. M., “Progressive flexural failure analysis of laminated composites with knitted fabric reinforcement,” Mechanics of Materials, Vol. 36, pp. 239-260, 2004.
[13] Santiuste, C. Sánchez-Sáez, S. Barbero, E., “A comparison of progressive-failure criteria in the prediction of the dynamic bending failure of composite laminated beams,” Composite Structures Vol. 92, pp. 2406–2414, 2010.
[14] Shokrieh, M. M. Ghajar, M. Salamattalab, M. and Madoliat, R., “Progressive damage modeling of laminated composites by considering simultaneous effects of interlaminar and intralaminar damage mechanisms” Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 1-8, 2015. (In Persian)
[15] Nazari, A. R., “Investigation of load carrying and progressive failure in the composite sandwich panels with elastomeric foam core under biaxial bending,” Ph.D. Thesis, Amirkabir University of Technology, Iran, 2016.
[16] Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM, D3039/D3039M – 00.
[17] ABAQUS, “Analysis user’s manual. Version 6.10” ABAQUS Inc, 2010.
[18] Batra, R. C. Gopinath, G. and Zheng, J. Q., “Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates” Composite Structures, Vol. 94, pp. 540–547, 2012.
[19] Hashin, Z., “On Elastic Behaviour of Fibers Reinforced Materials of Arbitrary Transverse Phase Geometry” Journal of Mechanics of Physics and Solids, Vol. 13, pp. 119–134, 1965.
[20] Hashin, Z. and Rotem, A., “A Fatigue Criterion for Fiber-Reinforced Materials,” Journal of Composite Materials, Vol. 7, pp. 448–464, 1973.
[21] Soden, P. D. Hinton, M. J. and Kaddour, A. S. A., “Comparison of the Predictive Capabilities of Current Failure Theories for Composite Laminates” Composite Science Technology, Vol. 58, pp. 1225-1254, 1998.
[22] Maimi, P. Camanho P. P. Mayugo J. A. Da´vila C. G., “A continuum damage model for composite laminates: Part I – Constitutive model”, Mechanics of Materials, Vol. 39: pp. 897-908, 2007.
[23] Lapczyk, I. and Hurtado, J. A., “Progressive Damage Modeling in Fiber-Reinforced Materials” Composites Part A-Applications, Vol. 38: pp. 2333–2341, 2007.
[24] Maimi, P. Camanho, P. P. Mayugo, J. A., et al. “A Continuum Damage Model for Composite Laminates: Part I – Constitutive Model” Mechanics of Materials, Vol. 39, pp. 897–908, 2007.
[25] Doudican, B. M. Zand, B. Amaya, P., et al. “Strain Energy Based Failure Criterion: Comparison of Numerical Predictions and Experimental Observations for Symmetric Composite Laminates Subjected to Triaxial Loading” Journal of Compos Materials, Vol. 47, No. 6–7, pp. 847–866, 2012.
[26] Wolfe W. E. and Butalia, T. S., “A Strain-Energy Based Failure Criterion for Non-Linear Analysis of Composite Laminates Subjected to Biaxial Loading” Composite Science Technology, Vol. 58, pp. 1107-1124, 1998.
[27] Jones, R. M., “Mechanics of Composite Materials with Different Moduli in Tension and Compression” Final Scientific Report, Air Force Office of Scientific Research, 1978.
[28] Mujika, F. Carbajal, N. Arrese, A. Mondragon, I., “Determination of Tensile and Compressive Moduli by Flexural Tests” Polymer Testing, Vol. 25, pp. 766–771, 2006.
[29] Roopa, T. S. Murthy, H. N. Sudarshan, K., et al. “Mechanical Properties of Vinylester/glass and Polyester/glass Composites Fabricated by Resin Transfer Molding and Hand lay-up” Journal of Vinyl Additive and Technology, doi: 11.1002/vnl.21393, 2014.