نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی دریا، دانشگاه صنعتی مالک اشتر، شاهین شهر، ایران

2 استادیار، مهندسی مکانیک، دانشگاه صنعتی مالک اشتر ، شاهین شهر، ایران

3 استاد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این تحقیق، تأثیر مسیر الیاف منحنی بر روی بهبود بار کمانش صفحه کامپوزیتی تحت فشار محوری و با در نظر گرفتن مسیرهای تغییر خطی و غیرخطی (مسیر شعاع انحناء ثابت) زاویه الیاف، بررسی شد. در مسیر تغییر خطی و غیر خطی، زاویه الیاف با مختصات نقاط واقع در صفحه به ترتیب به صورت خطی و غیرخطی تغییر می‌کند. در تحقیقات گذشته بر روی کمانش صفحات کامپوزیتی با الیاف منحنی، عمدتاً مسیرهای تغییر خطی زاویه الیاف بررسی گردید، اما فعالیت قابل توجهی در زمینه مقایسه‌ بین میزان اثرگذاری این مسیر با سایر مسیرها صورت نگرفت. لذا در این تحقیق، این مقایسه برای دو مسیر تغییر خطی و غیرخطی و برای یک صفحه کامپوزیتی بدون گشودگی و دارای گشودگی انجام شده است. برای مدل‌سازی‌ها از نرم‌افزار المان محدود آباکوس استفاده گردید. نتایج نشان می‌دهد که برای صفحه کامپوزیتی بدون گشودگی با ابعاد، جنس، لایه‌چینی و شرایط مرزی مورد نظر، مسیر تغییر خطی زاویه الیاف در حالت ایده‌آل، در حدود ده درصد بار کمانش بیشتری را نسبت به مسیر شعاع انحناء ثابت نتیجه داده اما با لحاظ قیود ساخت، مسیر شعاع انحناء ثابت، حدود چهار درصد نتایج بهتری را نشان می‌دهد. با توجه به شرایط مرزی اعمالی، مکانیزم افزایش بار کمانش با به‌کارگیری الیاف منحنی شکل، باربرداری از نواحی مرکزی و انتقال بار به لبه‌ها می‌باشد. دو هندسه گشودگی دایروی و بیضی شکل با قطر و نسبت‌های منظری مختلف نیز بررسی گردید. نتایج نشان می‌دهد که در مدل‌های با گشودگی با لحاظ قید ساخت، هر دو مسیر بار کمانش تقریبا یکسانی دارند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Buckling of composite plate made of curvilinear fiber with linear and nonlinear fiber orientation variation

نویسندگان [English]

  • Hossein Nopour 1
  • Abdulreza Kabiri Ataabadi 2
  • Mahmood Mehrdad Shokrieh 3

1 Department of Science and Marine Engineering, Malek Ashtar University of Technology, Shahinshahr, Iran

2 Department of Science and Marine Engineering, Malek Ashtar University of Technology, Shahinshahr, Iran

3 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

In this research, effect of curvilinear fibers on the buckling load improvement of composite plates was studied. Two paths for curvilinear fiber were considered, namely, the linear variation of fiber angle and the nonlinear variation of fiber angle (constant curvature). The fiber orientation varies linear and nonlinear with the coordinates of plate in these two mentioned paths respectively. In the previous researches, linear variation of fiber angle was usually investigated. However, the results were not compared with those of the other paths. In this research, comparisons between the two paths of the linear variation of fiber orientation and the constant curvature of composite plates with and without cutout were performed. ABAQUS finite element software was used for modeling and analysis. Results show that for composite plates without cutouts and with intended dimensions, material, lay-up and boundary conditions in the ideal state, the linear variation of fiber orientation caused ten percent increase in the buckling load in comparison with the constant curvature path. However, by considering the minimum practical radius constraint of the manufacturing method, the constant curvature path shows better results. According to applied boundary conditions, the mechanism of buckling load increase with curvilinear fibers is due to shifting the load from the center of plate to the side edges. Two geometries of cutout, circular cutout with different diameters and elliptical cutout with different aspect ratios were also considered. The results show that in the models with cutout by considering the manufacturing constraints, both paths have similar buckling load approximately.

کلیدواژه‌ها [English]

  • Composite plate
  • Curvilinear fiber
  • Linear variation of fiber orientation
  • Constant curvature path
  • Buckling
1-         
[1] Kuo, C.M., Takahashi, H. and Chou, T.W., “Effect of Fiber Waviness on the Nonlinear Elastic Behavior of Flexible Composites”, Composite Materials, Vol. 22, pp. 1004-1022, 1988.
[2] Charette, R.F. and Hyer, M.W., “Innovative Design of Composite Structure: The Use of Curvilinear Fiber Format in Structural Design of Composites”, MSc Thesis, University of Maryland, USA, 1990.
[3] Hyer, M.W. and Charette, R.F., “Use of Curvilinear Fiber Format in Composite Structure Design”, AIAA Journal, Vol. 29, pp. 1011-1015, 1991.
[4] Hyer, M.W. and Lee, H.H., “The Use of Curvilinear Fiber Format to Improve Buckling Resistance of Composite Plates with Central Holes”, Composite Structures, Vol. 18, No. 3, pp. 239-261, 1991.
[5] Olmedo, R. and Gurdal, Z., “Buckling Response of Laminates with Spatially Varying Fiber Orientations”, 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, La Jolla, CA, pp. 2261-2269, 1993.
[6] Gurdal, Z., Tatting, B.F., and Wu, C.K., “Variable Stiffness Composite Panels: Effects of Stiffness Variation on the In-plane and Buckling Response”, Composites: Part A, Vol. 39, pp. 911–922, 2008.
[7] Lopes, C.S., Gurdal, Z. and Camanho P.P., “Tailoring for Strength of Composite Steered-Fibre Panels with Cutouts”, Composites: Part A, Vol. 41, pp. 1760–1767, 2010.
[8] Waldhart, C., Gurdal, Z. and C., Ribbens, “Analysis of Tow Placed, Parallel Fiber, Variable Stiffness Laminates”, Collection of technical papers—AIAA/ASME/ASCE/AHS/ASC structures, 20th structural dynamics and materials conference, Salt Lake City, UT, pp. 2210–2220, 1996.
[9] Tatting, B.F. and Gurdal, Z., “Design and Manufacture of Elastically Tailored Tow Placed Plates”, NASA/CR 2002-211919, pp. 1–14, 2002.
[10] Wu, Z., Weaver, P.M., Raju, G. and Kim, B.C., “Buckling Analysis and Optimization of Variable Angle Tow Composite Plates”, Thin-Walled Structures, Vol. 60, pp. 163–172, 2012.
[11] Wu, Z., Raju, G. and Weaver, P.M., “Buckling of VAT Plates Using Energy Methods”, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, 2012.
[12] Arian Nik, M., Fayazbakhsh, K., Pasini, D. and L., Lessard, “Optimization of variable stiffness composites with embedded defects induced by Automated Fiber Placement”, Composite Structures, Vol. 107, pp. 160–166, 2014.
[13] Fayazbakhsh, K., “The Impact of Gaps and Overlaps on Variable Stiffness Composites Manufactured by Automated Fiber Placement”, PhD Thesis, McGill University, Canada, 2013.
[14] Fayazbakhsh, K., Arian Nik, M., Pasini, D. and Lessard, L., “Defect Layer Method to Capture Effect of Gaps and Overlaps in Variable Stiffness Laminates Made by Automated Fiber Placement”, Composite Structures, Vol. 97, PP. 245–251, 2013.
[15] Waldhart, C., “Analysis of Tow-Placed, Variable-Stiffness Laminates”, MSc Thesis, Virginia Polytechnic Institute and State University, USA, 1996.
[16] Arian Nik, M., Fayazbakhsh K., Pasini, D. and Lessard L., “Surrogate-based Multi-objective Optimization of a Composite Laminate with Curvilinear Fibers”, Composite Structures, Vol. 94, pp. 2306–2313, 2012.
[17] Gurdal, Z. and Olmedo, R., “In-plane Response of Laminates with Spatially Varying Fiber Orientations: Variable Stiffness Concept.”, AIAA Journal, Vol. 31, pp. 751–758, 1993.
[18] Blom, A.W., Lopes, C.S., Kromwijk, P.J., Gurdal, Z. and Camanho, P.P., “A Theoretical Model to Study the Influence of Tow-drop Areas on the Stiffness and Strength of Variable-stiffness Laminates”, Composite Materials, Vol. 43, pp. 403-425, 2009.
[19] Tatting, B.F., “Analysis and Design of Variable Stiffness Composite Cylinders”, PhD Thesis, Virginia Polytechnic Institute and State University, USA, 1998.
[20] Marouene, A., Boukhili, R., Chen, J. and Yousefpour, A., “Buckling behavior of variable-stiffness composite laminates manufactured by the tow-drop method”, Composite Structures, Vol. 139, pp. 243-253, 2016.
[21] Lopes, C.S., Camanho, P.P., Gurdal, Z. and Tatting, B.F., “Progressive failure analysis of tow-placed,variable-stiffness composite panels”,  Vol. 44, pp. 8493-8516, 2007.
 [22] Zamani, Z., Rahimi Sherbaf, GH. H. and Ghazavi, M., “Analysis of Composite Laminate with Curvilinear Fiber under Axial Compression”, In Persian, 17th Mechanic Conference, ISME, Tehran, Iran, 2009.
[23] Campen, V., “Optimum Lay-up Design of Variable Stiffness Composite Structures”, PhD Thesis, Delft University of Technology, Netherland, 2011.
[24] IJsselmuiden, S.T., “Optimal Design of Variable Stiffness Composite Structure Using Lamination Parameters”, PhD Thesis, Delft University of Technology, Netherland, 2011.