نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مکانیک، دانشگاه تهران، تهران - ایران

2 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه تهران، تهران، ایران

چکیده

با توجه به گسترش استفاده مواد کامپوزیت پلیمری در صنایع، بررسی دقیق خواص این مواد در شرایط مختلف بارگذاری از جمله ضربه سرعت بالا بسیار حائز اهمیت است. در این پژوهش به بررسی ضربه سرعت بالا بر روی پنل کامپوزیتی پلیمری غیر هیبرید و هیبریدی پرداخته شده است. در ابتدا پس از معرفی انواع بارگذاری ضربه، تئوریهای مورد استفاده در خصوص ارزیابی آسیب و مقایسه آنها، با استفاده از تئوری ماتزنمیلر، به پیش بینی آسیب پرداخته شده است. در این تئوری برای ارزیابی دقیق تر تخریب، تنش برشی در ناحیه الاستیک به صورت غیرخطی در نظر گرفته شده است. در ادامه، جهت استفاده از این تئوری، یک سابروتینVUMAT در قالب نرم افزار Abaqus جهت مدلسازی اجزا محدود نوشته شده است. در نهایت، نتایج حاصل از مدلسازی و تحلیل حاضر با نتایج تجربی موجود، برای حالت های مختلف پنل های کامپوزیتی غیرهیبرید و هیبریدی مقایسه شده است. تطابق مناسب نتایج تئوری مورد استفاده در این تحقیق با داده های آزمایشگاهی، توانمندی مدل و سابروتین ارائه شده در این تحقیق را نشان می دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Finite element simulation of high velocity impact on polymer composite plates

نویسندگان [English]

  • Majid Safarabadi 1
  • Parham Ashkani 2
  • Seyed Mehdi Ganjiani 1

1 School of Mechanical Engineering, University of Tehran, Tehran, Iran

2 Department of Mechanical Engineering, University of Tehran, Iran

چکیده [English]

According to the increase in using of polymer composite materials in industry, exact characterization of the material properties in different loading conditions, including high velocity impact is very important. In this article, the high velocity impact on non-hybrid and hybrid polymer composite panel has been investigated. After introducing the impact load types and theories used for damage evaluation and comparison of them, the matzenmiler theory has been employed to predict damage. In this theory, in order to predict more accurate damage evaluation, the shear stress is considered nonlinear in elastic region. Afterwards, in order to use the theory in the finite element modeling, a VUMAT subroutine is implementated in the Abaqus software. Finally, the obtained results from the present modeling and analysis, are compared with available experimental data for non-hybrid and hybrid composite panels. The good agreement between the theoretical results and experimental data, introduces the ability of the applied model and provided subroutine

کلیدواژه‌ها [English]

  • Composite plates
  • Hybrid
  • High velocity impact
 
[1] Hassanpoor, F., Liaghat, G., Sabouri, H., Hadavi, H., “Experimental Study of the interaction of surfaces with aluminum honeycomb core in sandwich panels in the quasi-static and dynamic penetration“, In Persain, Journal of Science and Technology of Composites,Vol. 16, pp. 23-31, 2016.
[2] Hedayatian, M., Liaghat, G. H., Rahimi, G. H., Pol, M. H., “Numerical and Experimental Study of penetration of the projectile at high speed cylindrical honeycomb composites“, In Persian, Journal of Science and Technology of Composites, Vol. 14, pp. 17-26, 2014.
[3] Pirmohammadi, N., Liaghat, G., Pol, M. H., “Experimental Study on ballistic behavior of honeycomb core sandwich plates“, In Persian, Journal of Science and Technology of Composites, Vol. 14, pp. 17-26, 2014.
[4] S. Morye, P. Hine, R. Duckett, D. Carr, and I. Ward, "Modelling of the energy absorption by polymer composites upon ballistic impact," Composites Science and Technology, vol. 60, pp. 2631-2642, 2000.
[5] N. Naik and P. Shrirao, "Composite structures under ballistic impact," Composite structures, vol. 66, pp. 579-590, 2004.
[6] J. López-Puente, R. Zaera, and C. Navarro, "Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates," Composites Part A: applied science and manufacturing, vol. 39, pp. 374-387, 2008.
[7] W. Cantwell and J. Morton, "Comparison of the low and high velocity impact response of CFRP," Composites, vol. 20, pp. 545-551, 1989.
[8] D. Feng and F. Aymerich, "Finite element modelling of damage induced by low-velocity impact on composite laminates," Composite Structures, vol. 108, pp. 161-171, 2014.
 
 
 
[9] M. V. Donadon, L. Iannucci, B. G. Falzon, J. M. Hodgkinson, and S. F. M. de Almeida, "A progressive failure model for composite laminates subjected to low velocity impact damage," Computers & Structures, vol. 86, pp. 1232-1252, 2008.
[10]     M. Donadon, #237, c. V., S. de Almeida, #233, r. F. M., M. A. Arbelo, and A. R. de Faria, "A Three-Dimensional Ply Failure Model for Composite Structures," International Journal of Aerospace Engineering, vol. 2009, 2009.
 [11]    Cervera, M., Chiumenti, M., “Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique“, Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 1, pp. 304-320, 2006.
[12]     Soutis, C., Beaumont, P. W., “Multi-scale modelling of composite material systems: The art of predictive damage modelling“,  Elsevier, 2005.
[13]     De Vree, J., Brekelmans, W., Van Gils, M., “Comparison of nonlocal approaches in continuum damage mechanics“, Computers & Structures, Vol. 55, No. 4, pp. 581-588, 1995.
[14]     Kachanov, L., “Introduction to continuum damage mechanics“,  Springer Science & Business Media, 1986.
[15]     Kachanov, L. M., “on the creep rupture time (in russia)“, Izv. Akad Nauk, Vol. 8, pp. 26-31, 1958.
[16]     Kondo, D., Welemane, H., Cormery, F., “Basic concepts and models in continuum damage mechanics“, Revue Européenne de Génie Civil, Vol. 11, No. 7-8, pp. 927-943, 2007.
[17]     Rots, J., Nauta, P., Kuster, G., Blaauwendraad, J., “Smeared crack approach and fracture localization in concrete“, 1985.
[18]     Kim, E.-H., Lee, I., Hwang, T.-K., “Low-Velocity Impact and Residual Burst-Pressure Analysis of Cylindrical Composite Pressure Vessels“, AIAA Journal, Vol. 50, No. 10, pp. 2180-2193, 2012.
[19]     Matzenmiller, A., Lubliner, J., Taylor, R., “A constitutive model for anisotropic damage in fiber-composites“, Mechanics of materials, Vol. 20, No. 2, pp. 125-152, 1995.
[20]     Kim, S. J., Goo, N. S., Kim, T. W., “Low-Velocity Impact and Residual Burst-Pressure Analysis of Cylindrical Composite Pressure Vessels “, Composites Science and Technology, Vol. 51, 1997.
[21]     Turon Travesa, A., “Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models“,  Universitat de Girona, 2006.
[22]     Camanho, P. P., Davila, C., De Moura, M., “Numerical simulation of mixed-mode progressive delamination in composite materials“, Journal of Composite Materials, Vol. 37, No. 16, pp. 1415-1438, 2003.
[23]     Alimoradi, “Evaluation of damage caused by low-speed impact loads on composite sandwich plates“, In Persian, Master Thesis, Malek Ashtar University of Technology, 2007
[24] ABAQUS Analysis User Manual.
[25]     Guo, W., Xue, P., Yang, J., “Nonlinear progressive damage model for composite laminates used for low-velocity impact“, Applied Mathematics and Mechanics, Vol. 34, pp. 1145-1154, 2013.
[26]     Benzeggagh, M. L., Kenane, M., “Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus“, Composites Science and Technology, Vol. 56, No. 4, pp. 439-449, 1996.
[27]     Chen, J.-F., Morozov, E. V., Shankar, K., “Simulating progressive failure of composite laminates including in-ply and delamination damage effects“, Composites Part A: Applied Science and Manufacturing, Vol. 61, pp. 185-200, 2014.
[28]     Pandya, K. S., Pothnis, J. R., Ravikumar, G., Naik, N., “Ballistic impact behavior of hybrid composites“, Materials & Design, Vol. 44, pp. 128-135, 2013.