نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، مهندسی مکانیک، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرو د

چکیده

یکی از روش‌های جدید برای بهبود خواص مکانیکی لایه‌های‌ سطحی، فرآوری اصطکاکی اغتشاشی (FSP) است. در صورتی که فرآیند FSP به همراه یک ماده مصرفی انجام شود، این فرآیند جدید تحت عنوان آلیاژسازی اصطکاکی اغتشاشی (FSA) شناخته می‌شود. از این‌رو در پژوهش پیش‌رو، کامپوزیت‌های سطحی Al7075 با به‌کارگیری ذرات تقویت‌کننده از جنس آلومینا، با استفاده از این فرآیند و منطبق بر اصول طراحی آزمایش، تولید شدند‌. بدین منظور، روش RSM به عنوان روش طراحی آزمایش، انتخاب گردید و متغیرهای: سرعت دورانی ابزار، نرخ پیشروی ابزار، قطر شانه ابزار و اندازه ذرات تقویت‌کننده به عنوان متغیرهای ورودی فرآیند، تعیین شدند. نتایج حاصل از آنالیز واریانس و تحلیل رگرسیون داده-های حاصل از آزمون‌های تجربی، صحت و دقت معادلات رگرسیون را مورد تأیید قرار داد و نشان داد که نرخ پیشروی ابزار، قطر شانه ابزار و اندازه ذرات تقویت‌کننده با تأثیرات خطی و مرتبه دوم، بر استحکام کششی و انعطاف‌پذیری نمونه‌های کامپوزیتی موثر هستند. همچنین، در صورتی که سرعت دورانی ابزار در مقدار 800 rpm تنظیم شود، افزایش قطر شانه ابزار از 9 mm به15 mm باعث افزایش 17.97 درصدی استحکام کششی نمونه‌های کامپوزیتی می‌شود. علاوه بر این، کاهش نرخ پیشروی ابزار از 60 mm/min به 20 mm/min و کاهش اندازه ذرات آلومینا از 50 میکرون به 20 میکرون، به ترتیب موجب افزایش انعطاف‌پذیری نمونه‌های کامپوزیتی به میزان 1.85 % و 5.04 % می‌شود. در پایان، با دستیابی به مقدار بیشینه تابع مطلوبیت (0.915)، شرایط بهینه‌ متغیرهای ورودی فرآیند تعیین شد و با اجرای آزمون صحه‌گذاری، به تأیید رسید.

کلیدواژه‌ها

عنوان مقاله [English]

Modelling and optimization of parameters affecting the tensile strength and ductility of aluminum-based composite produced by FSA via RSM

نویسنده [English]

  • Mahdi Vahdati

Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran.

چکیده [English]

One of the new methods to improve the mechanical properties of surface layers is the friction stir processing (FSP). If the FSP process is carried out with a consumable material, this new process is known as the friction stir alloying (FSA). Therefore in this research, the Al7075 surface composites by using reinforcing particles (Al2O3) were produced based on this process in accordance with the DOE approach. So, the RSM was selected as the experiment design method and variable factors such as: tool rotational speed, tool feed rate, tool shoulder diameter and size of reinforcing particles were determined as the input variables. The results of ANOVA and regression analysis of experimental data approved the accuracy of regression equations and showed that the tool feed rate, tool shoulder diameter and size of reinforcing particles with linear and second-order effects, affect on the tensile strength and ductility of the composite specimens. Also, if the tool rotational speed is set at 800 rpm, increasing the tool shoulder diameter from 9 mm to 15 mm will increase the tensile strength of the composite specimens by 17.97%. In addition, lowering the tool feed rate from 60 mm/min to 20 mm/min and reducing the size of alumina particles from 50 micron to 20 micron, will increase the ductility of composite specimens by 1.85% and 5.04%, respectively. Finally, by achieving maximum value of desirability function (0.915), the optimal condition of input variables was determined. In addition, the optimal condition has been confirmed by implementing the verification test.

کلیدواژه‌ها [English]

  • Optimization
  • Surface composite
  • Tensile strength
  • Ductility
  • Friction stir alloying
[1] Mironov, S. Sato, Y. S. and Kokawa, H., “Nanocrystalline titanium, Chapter 4: Friction-stir processing”, Elsevier, ISBN 9780128145999, pp. 55-69, 2019.
[2] Yousefpour, H. and Akbari Mousavi, S. A. A., “Investigations on microstructure, wear behavior and corrosion resistance of brass/graphite composite produced by friction stir processing”, In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 253-260, 2016.
[3] Mishra, R. S. and Ma, Z. Y., “Friction stir welding and processing”, Materials Science and Engineering: R: Reports, Vol. 50, No. 1-2, pp. 1-78, 2005.
[4] Weglowski, M. S., “Friction stir processing - State of the art”, Archives of Civil and Mechanical Engineering, Vol. 18, No. 1, pp. 114-129, 2018.
[5] Zadali Kotiyani, M. and Ranjbar, Kh., “Effect of heat treatment on microstructure and wear behavior of in-situ formed Al 3003/Al3Zr + Al3Ti composite fabricated via friction stir processing”, In Persian, Journal of Science and Technology of Composites, Vol. 6, No.3, pp. 363-372, 2019.
[6] Thomas, W. M. Nicholas, E. D. Needham, J. C. Murch, M. G. Templesmith, P. and Dawes, C. J., “Improvements to friction welding”, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.
[7] Sahu, P. K. Singh, S. Chen, G. Yijun, L. Zhang, S. and Shi, Q., “Wear behavior of the friction stir alloyed AZ31 Mg at different volume fractions of Al particles reinforcement and its enhanced quality attributes”, Tribology International, Vol. 146, pp. 106268, 2020.
[8] Shafiei-Zarghani, A. Kashani-Bozorg, S. F. and Gerlich, A. P., “Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing”, Materials Science and Engineering: A, Vol. 631, pp. 75-85, 2015.
[9] Sharma, V. Prakash, U. and Manoj Kumar, B. V., “Surface composites by friction stir processing: A review”, Journal of Materials Processing Technology, Vol. 224, pp. 117-134, 2015.
[10] Avettand-Fènoël, M. N. Simar, A. Shabadi, R. Taillard, R. and de Meester, B., “Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing”, Material Design, Vol. 60, pp. 343-357, 2014.
[11] Gopan, V. Sreekumar, P. S. Chandran, J. P. Vijay, W. and Sanjay Kumar, M., “Experimental investigation on the effect of process parameters on friction stir processing of aluminium”, Materials Today: Proceedings, Vol. 5, No. 5, pp. 13674-13681, 2018.
[12] Bharti, S. Dutta, V. Sharma, S. and Kumar, R., “A study on the effect of Friction Stir Processing on the hardness of Aluminum 6000 series”, Materials Today: Proceedings, Vol. 18, No. 7, pp. 5185-5188, 2019.
[13] Faraji, G. Dastani, O. and Mousavi, S. A. A. A., “Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP”, Journal of Materials Engineering and Performance, Vol. 20, pp. 1583-1590, 2011.
[14] Khayyamin, D. Mostafapour, A. and Keshmiri, R., “The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP”, Materials Science and Engineering: A, Vol. 559, pp. 217-221, 2013.
[15] Sathiskumar, R. Murugan, N. Dinaharan, I. and Vijay, S. J., “Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing”, Materials Characterization, Vol. 84, pp. 16-27, 2013.
[16] Ghasemi-Kahrizsangi, A. Kashani-Bozorg, S. F. and Moshref-Javadi, M., “Effect of friction stir processing on the tribological performance of Steel/Al2O3 nanocomposites”, Surface and Coatings Technology, Vol. 276, pp. 507-515, 2015.
[17] Shafiei-Zarghani, A. Kashani-Bozorg, S. F. and Gerlich, A. P., “Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing”, Materials Science and Engineering: A, Vol. 631, pp. 75-85, 2015.
[18] Rao, V. R. Ramanaiah, N. and Sarcar, M. M. M., “Fabrication and investigation on properties of TiC reinforced Al7075 metal matrix composites”, Applied Mechanics and Materials, Vol. 592-594, pp. 349-353, 2014.
[19] Josyula, S. K. and Narala, S. K. R., “A brief review on manufacturing of Al-TiC MMC”, Advanced Materials Research, Vol. 980, pp. 62-68, 2014.
[20] Sharma, V. Prakash, U. and Manoj Kumar, B. V., “Surface composites by friction stir processing: A review”, Journal of Materials Processing Technology, Vol. 224, pp. 117-134, 2015.
[21] Mishra, R. S. Ma, Z. Y. and Charit, I., “Friction stir processing: a novel technique for fabrication of surface composite”, Materials Science and Engineering: A, Vol. 341, No. 1-2, pp. 307-310, 2003.
[22] Mahmoud, E. R. I. Takahashi, M. Shibayanagi, T. and Ikeuchi, K., “Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface”, Science and Technology of Welding and Joining, Vol. 14, No. 5, pp. 413-425, 2009.
[23] Shafiei-Zarghani, A. Kashani-Bozorg, S. F. and Zarei-Hanzaki, A., “Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing”, Materials Science and Engineering: A, Vol. 500, No. 1-2, pp. 84-91, 2009.
[24] Zahmatkesh, B. and Enayati, M. H., “A novel approach for development of surface nanocomposite by friction stir processing”, Materials Science and Engineering: A, Vol. 527, No. 24-25, pp. 6734-6740, 2010.
[25] Maxwell Rejil, C. Dinaharan, I. Vijay, S. J. and Murugan, N., “Microstructure and sliding wear behavior of AA6360/(TiC+B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate”, Materials Science and Engineering: A, Vol. 552, pp. 336-344, 2012.
[26] Soleymani, S. Abdollah-zadeh, A. and Alidokht, S. A., “Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing”, Wear, Vol. 278-279, pp. 41-47, 2012.
[27] Ahmadifard, S. Shahin, N. Kazemi, S. Heidarpour, A. and Shirazi, A., “Fabrication of A5083/SiC surface composite by friction stir processing and its characterization”, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 4, pp. 31-36, 2016.
[28] Khodabakhshi, E. Kazemi, Sh. and Ahmadifard, S., “Investigation the mechanical and microstructural propreties of copper surface composite Cu/SiO2 fabricated by friction stir processing”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 426-433, 2018.
[29] Kurt, A. Uygur, I. and Cete, E., “Surface modification of aluminium by friction stir processing”, Journal of Materials Processing Technology, Vol. 211, pp. 313-317, 2011.
[30] Azizieh, M. Kokabi, A. H. and Abachi, P., “Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing”, Materials and Design, Vol. 32, pp. 2034-2041, 2011.
[31] Nakhaei, M. R., Naderi, G. and Mostafapour, A., “Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing”, Iranian Polymer Journal, Vol. 25, pp. 179-191, 2016.
[32] Mostafapour, A., Naderi G. and Nakhaei M. R., “Effect of process parameters on fracture toughness of PP/EPDM/nanoclay nanocomposite fabricated by novel method of heat assisted friction stir processing”, Polymer Composites, Vol. 39, No. 7, pp. 2336-2346, 2018.
[33] Myers, R. H. Montgomery, D. C. and Anderson-Cook, C. M., “Response surface methodology: process and product optimization using designed experiments”, 4th edition, John Wiley & Sons, ISBN 978-1-118 91601-8, 2016.
[34] Vahdati, M. Mahdavinejad, R. and Amini, S., “Statistical Analysis and Optimization of Factors Affecting the Spring-back Phenomenon in UVaSPIF Process Using Response Surface Methodology”, International Journal of Advanced Design and Manufacturing Technology, Vol. 8, No.1, pp. 13-23, 2015.
[35] Choopani, Y. Khajehzadeh, M. and Razfar, M., “Optimization of parameters affecting the magnetic abrasive finishing process using response surface method”, In Persian, Amirkabir Journal of Mechanical Engineering, Vol. 52, No. 10, pp. 41-50, 2019.
[36] Design Expert software, http://www.statease.com, available in 1, April 2020.
[37] Online materials information resource, http://www.matweb.com, available in 1, April 2020.
[38] Heat Treatment of Aluminum Alloys, Aerospace Material Specification, AMSH6088, 1997.
[39] Pourian Chemical Institute, http://pourian-chemical.com, available in 22, May 2020.
[40] Montgomery, D. C., “Design and analysis of experiments”, 9th edition, John Wiley & Sons, ISBN 978-1-119-11347-8, 2017.
[41] Arbegast, W. J., “Modeling friction stir joining as a metalworking process”, Proceedings of Hot Deformation of Aluminum Alloys III, pp. 313-327, 2003.
[42] Benavides, S., Li, Y., Murr, L. E., Brown, D. and McClure, J. C., “Low-temperature friction-stir welding of 2024 aluminium”, Scripta Materialia, Vol. 41, No. 8, pp. 809-815, 1999.
[43] Shanmuga Sundaram, N. and Murugan, N., “Tensile behavior of dissimilar friction stir welded joints of aluminium alloys”, Materials & Design, Vol. 31, No. 9, pp. 4184-4193, 2010.
[44] Ahmadi, A., Toroghinejad, M. R. and Najafizadeh, A., “Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process”, Materials & Design, Vol. 53, pp.13-19, 2014.
[45] Rahmatabadi, D. and Hashemi, R., “Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding”, International Journal of Materials Research, Vol. 108, No. 12, pp.1036-1044, 2017.