نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران.

2 استادیار، مهندسی مکانیک ، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد.

3 استادیار، مهندسی مکانیک، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران.

4 استادیار، مهندسی مکانیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

10.22068/jstc.2020.130640.1668

چکیده

امروزه، به علت نیاز صنایع مختلف، استفاده از قطعات کامپوزیتی با جدار نازک به دلیل بالا بودن نسبت استحکام به وزن آن بیش از پیش مورد توجه قرار گرفته است. ساختار لایه‌ای کامپوزیت‌ها، موجب مشکلات و آسیب‌هایی در فرآیند ماشین‌کاری می‌گردد، این مشکلات مخصوصاً در ماشین‌کاری قطعات کامپوزیتی با جدار نازک، بیشتر می‌باشد. یکی از راهکارهای مناسب جهت جلوگیری از بروز آسیب طی ماشین‌کاری کامپوزیت‌های جداره نازک استفاده از فرآیند ماشین-کاری سرعت بالا می‌باشد. در این تحقیق تأثیر پارامترهای فرزکاری سرعت بالا بر روی زبری‌سطح، نرخ براده‌برداری و میزان انحراف در کامپوزیت جدار نازک، مورد مطالعه قرار گرفت. به این منظور ابتدا نمونه‌های کامپوزیتی از جنس شیشه-اپوکسی با ضخامت‌های 2، 4 و 6 میلی‌متر تهیه گردید و سپس عملیات فرزکاری سرعت بالا بر روی نمونه‌ها، با تغییر پارامترهای سرعت اسپیندل، نرخ پیشروی و عمق برش، انجام شد. آزمایشات انجام شده توسط نرم-افزار مینی‌تب طراحی و آنالیز گردید. مقایسه نتایج حاصل از بهینه‌سازی بر روی کامپوزیت‌ها با ضخامت‌های متفاوت به روش سطح‌ پاسخ نشان داد که مقادیر بهینه میزان زبری سطح 2.12 میکرومتر، نرخ براده‌برداری 5.99 میلی‌متر مکعب بر دقیقه و میزان انحراف 0.082 میلی‌متر مربوط به نمونه با ضخامت 6 میلی‌متر می‌باشد. در کامپوزیت‌های با ضخامت 6 میلی-متر به علت برخورداری از صلبیت بالاتر، نتایج مطلوب‌تری بدست آمد. همچنین میزان خطای پیش-بینی شده در مقایسه با مقادیر تجربی بدست آمده برای پارامترهای زبری سطح، نرخ براده-برداری و میزان انحراف به ترتیب 6%، -5.22% و 2.5% محاسبه گردید که نشان دهنده توافق مطلوب نتایج تجربی و تحلیل آماری می باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Study of the surface roughness, material removal rate and deflection in thin-walled composite structures during the high speed machining process

نویسندگان [English]

  • Maryam Razifar 1
  • Payam Saraeian 2
  • Ehsan Shakouri 3
  • Adel Maghsoudpour 4

1 Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Mechanical Engineering, Najaf Abad Branch, Islamic Azad University, Najaf Abad, Iran.

3 Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.

4 Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

Nowadays, due to the need of composite structures with thin walls in industry and due to low weight ratio to high strength, has received more consideration than before. Composite laminates are cause of more problems and damages in machining process. This problems are especially in thin wall composite structures. One of the best ways for preventing damage during machining process in thin wall composite structures is use of machining process with high speed. In this study effect of milling parameters in high speed on surface roughness, material removal rate, and deflection in thin wall composite structures was studied. For this purpose, firstly were made samples of glass- epoxy composite with thicknesses 2mm, 4mm and 6mm and then milling process with high speed and changing spindle speed, feed rate, and cutting depth was done. To get test results using an experimental design. Comparison of the optimization results on composites with different thicknesses by the response surface methodology, showed that the optimal values of surface roughness 2.12 μm and material removal rate 5.99 mm3/min and deflection of 0.082 mm is for the sample with a thickness 6 mm. In composites with a thickness 6 mm due to higher rigidity, better results were obtained. Also, the predicted error rate was calculated in comparison with the experimental values obtained for the surface roughness parameters, material removal rate and deflection rate 6%, -5.22% and 2.5%, respectively, which indicates the favorable agreement between the experimental results and statistical analysis.

کلیدواژه‌ها [English]

  • High Speed Machining
  • Thin-walled Composite
  • Surface roughness
  • material removal rate (MRR)
  • Deflection
[1]Nassar, M. M., Arunachalam, R. and  Alzebdeh, K. I., “Machinability of Natural Fiber Reinforced Composites: A Review“ The International Journal of Advanced Manufacturing Technology, Vol. 88, No. 9-12, pp. 2985-3004, 2017.
[2]Patil, A. and  Shende, M., “Experimental and Analytical Investigation of Drilling of Sandwich Composites: A Review“ methodology, Vol. 27, No. 3, 2013.
[3]Jones, R. M., “Mechanics of Composite Materials“,  CRC press, 2014.
[4]Kaw, A. K., “Mechanics of Composite Materials“,  CRC press, 2005.
[5]Mohan, N., Kulkarni, S. and  Ramachandra, A., “Delamination Analysis in Drilling Process of Glass Fiber Reinforced Plastic (Gfrp) Composite Materials“ Journal of Materials Processing Technology, Vol. 186, No. 1-3, pp. 265-271, 2007.
[6]Saeed Amini, M. B., “Statistical Study of the Effect of Various Machining Parameters on Delamination in Drilling of Carbon Fiber Reinforced Composites, in Persian“, Vol. 5, No. 1, pp. 41-50, 2018.
[7]Babu, J., Paul, L. and  Davim, J. P., “High Speed Machining of Composite Materials“  in: High Speed Machining, Eds., pp. 63-96 Elsevier, 2020.
[8]Jain, A. K., Narasaiah, K. and  Gopinath, S., “Machining of Thin Walls and Thin Floor Aerospace Components Made of Aluminum Alloy with High Aspect Ratio“ in Proceeding of  Trans Tech Publ, pp. 112-115, 2015..
[9]Mane, I., Gagnol, V., Bouzgarrou, B. and  Ray, P., “Stability-Based Spindle Speed Control During Flexible Workpiece High-Speed Milling“ International Journal of Machine Tools and Manufacture, Vol. 48, No. 2, pp. 184-194, 2008.
[10]Jain, A. and  Bajpai, V., “Introduction to High-Speed Machining (Hsm)“  in: High Speed Machining, pp. 1-25, 2020.
[11]Hamlaoui, N., Azzouz, S., Chaoui, K., Azari, Z. and  Yallese, M.-A., “Machining of Tough Polyethylene Pipe Material: Surface Roughness and Cutting Temperature Optimization“ The International Journal of Advanced Manufacturing Technology, Vol. 92, No. 5-8, pp. 2231-2245, 2017.
[12]celik, Y. H., Kilickap, E. and  Kilickap, A. İ., “An Experimental Study on Milling of Natural Fiber (Jute)-Reinforced Polymer Composites“ Journal of Composite Materials, 2019.
[13]Prasanth, I., Ravishankar, D., Hussain, M. M., Badiganti, C. M., Sharma, V. K. and  Pathak, S., “Investigations on Performance Characteristics of Gfrp Composites in Milling“ The International Journal of Advanced Manufacturing Technology, Vol. 99, No. 5-8, pp. 1351-1360, 2018.
[14]Nurullah, F. P., Pramujati, B., Suhardjono, Effendi, M. K., Soepangkat, B. O. P. and  Norcahyo, R., “Multi Response Prediction of End-Milling Cfrp with Backpropagation Neural Network“ in Proceeding of  AIP Publishing LLC, pp. 1-13, 2019.
[15]Adeniji, D., Schoop, J., Gunawardena, S., Hanson, C. and  Jahan, M., “Characterization and Modeling of Surface Roughness and Burr Formation in Slot Milling of Polycarbonate“ Journal of Manufacturing and Materials Processing, Vol. 4, No. 2, pp. 59, 2020.
[16]www. and  afzir.com, Specification Sheet, December 2018.
[17]Izamshah, R., Mo, J. and  Ding, S.,“Hybrid Deflection Prediction on Machining Thin-Wall Monolithic Aerospace Components“ Proceedings  of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 226, No. 4, pp. 592-605, 2012.
[18]Manikandan, H., Sreejith, S., Vivek, K., Jayaram, C. S. and  Azeemhafiz, P., “Error Compensation Strategies for Workpiece Deflection During End Milling of Thin-Walled Straight and Curved Geometries“  in: Recent Trends in Mechanical Engineering, Eds., pp. 249-258, 2020.
[19] Yosefitabar, M., matipour, M., “Study of surface roughness in high speed milling of 1.7765 hard alloyed  steel“ in Persian, Modares Mechanical Engineering, Proceedings of the Advanced Machining and Machine Tools Conference, Vol. 15, No. 20, pp. 86-89, 2016.
[20] Seguy, S., Dessein, G. and  Arnaud, L., “Surface Roughness Variation of Thin Wall Milling, Related to Modal Interactions“ International Journal of Machine Tools and Manufacture, Vol. 48, No. 3-4, pp. 261-274, 2008.
[21] Ghoreishi, R., Roohi, A. H. and  Ghadikolaei, A. D., “Analysis of the Influence of Cutting Parameters on Surface Roughness and Cutting Forces in High Speed Face Milling of Al/Sic Mmc“  in Persian, Materials Research Express, Vol. 5, No. 8, 2018.
[22] Imani, L., Rahmani Henzaki, A., Hamzeloo, R. and  Davoodi, B., “Modeling and Optimizing of Cutting Force and Surface Roughness in Milling Process of Inconel 738 Using Hybrid Ann and Ga“ in Persian Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 234, No. 5, pp,  920-932, 2020.
[23] Pal, P., Prabhu, R. and  Sakthimurugan, K., “Surface Error Compensation in Hsm of Thin Wall Structures“ International Journal of Engineering Science Invention, Vol. 2, No. 2, pp. 2319-6734, 2013.
[24] Boothroyd, G., “Fundamentals of Metal Machining and Machine Tools“,  Crc Press, 1988.
[25] Arnaud, L., Gonzalo, O., Seguy, S., Jauregi, H. and  Peigné, G., “Simulation of Low Rigidity Part Machining Applied to Thin-Walled Structures“ The International Journal of Advanced Manufacturing Technology, Vol. 54, No. 5-8, pp. 479-488, 2011.
[26] Sonawane, S. A. and  Pawar, A. P., “Effect of Cutting Variables of End Milling Process on Surface Roughness and Machining Vibrations“  in: Techno-Societal 2018, Eds., pp. 661-670: Springer, 2020.