نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران.

2 دانشیار، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران.

3 استاد، انستیتو علم مواد، اتصال دهی و شکل دهی، دانشگاه صنعتی گراتس، گراتس.

10.22068/jstc.2020.129497.1665

چکیده

فویل آلومینیوم به طور گسترده‌ای در بسته‌بندی و مصارف خانگی مورد استفاده قرار می‌گیرد تا از مواد غذایی و محصولات دارویی در برابر اثرات محیطی محافظت کند. در سال‌های اخیر، روش‌های تغییر شکل پلاستیک شدید، به سبب تولید مواد فلزی با ساختار فوق ریزدانه بسیار مورد توجه قرار گرفته‌اند. گستره‌ی بالای کاربرد نانوساختارها، به دلیل ویژگی‌های فیزیکی و مکانیکی منحصر به فردشان، اهمیت مطالعه برروی این روش‌های شکل‌دهی را آشکار می‌سازد. فرآیند نورد پیوندی تجمعی یکی از بهترین و کاربردی‌ترین روش‌های شکل‌دهی ورق‌های فلزی است که مکانیزم آن، تغییرشکل پلاستیک ماده از طریق عبور بین دو یا چند غلتک است. در پژوهش حاضر، فویل‌های آلومینیومی به ضخامت 200 میکرون به روش نورد تجمعی در 5 گذر، بدون استفاده از روانکار، بدون عملیات حرارتی بین گذر‌ها و در دمای محیط تولید شدند. به منظور بررسی خواص مکانیکی آزمون کشش تک محوره و میکروسختی، و برای بررسی سطح مقطع شکست، از میکروسکوپ الکترونی روبشی استفاده شده است. استحکام کششی نهایی در پایان گذر پنجم نورد تجمعی به 393 مگاپاسکال رسید که نسبت به نمونه ی اولیه 5.9 برابر شده است. همچنین نسبت به پژوهش پیشین، استحکام بدست آمده بالاترین مقدار بوده که به دلیل ضخامت کمتر لایه‌ها و نفوذ اکسید‌های سطحی به نمونه در مرحله آماده‌سازی است. همچنین با افزایش گذر‌های نورد پیوندی تجمعی، ضخامت لایه‌ها کمتر شده و کیفیت پیوند بین لایه ها بهبود می یابد. بررسی سطوح شکست در گذر پنجم نشان می‌دهد که مکانیزم شکست از نوع نرم است.

کلیدواژه‌ها

عنوان مقاله [English]

Production of high strength metallic foil by accumulative roll bonding process

نویسندگان [English]

  • Elaheh Alizadeh Alisaraei 1
  • Ramin Hashemi 2
  • Davood Rahmatabadi 1
  • Christof Sommitsch, 3

1 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

3 Institute of Materials Science, Graz University of Technology, Graz, Austria.

چکیده [English]

Aluminum foils have been extensively used in packaging and household applications to protect foods and pharmaceutical products from environmental effects. In recent years, sever plastic deformation processes have been highly regarded due to the production of ultra-fine-grained metal materials. The high applicability of nanostructures, due to their unique physical and mechanical properties, reveals the importance of investigations on new forming methods. Accumulative roll bonding (ARB) process is one of the best and most practical methods for forming metal sheets, which mechanism is the plastic deformation of material through the passage between two or more rollers. In this investigation, thin aluminum foils with a thickness of two hundred microns were produced using accumulative roll bonding method in five passes without lubricant or additional heat treatment between passes and at ambient temperature. To investigate the mechanical properties, uniaxial tensile test and microhardness test were used, and to investigate the microstructure and fracture surface area, scanning electron microscopy was used. The ultimate tensile strength at the end of the fifth ARB pass reached 393 MPa, about 5.9 times larger than of the initial sample. Also, compared to the previous research, the obtained strength was highest due to the lower thickness of the layers and the penetration of surface oxides into the metal matrix during preparation. Furthermore, by increasing the number of accumulative roll bonding passes, the thickness of the layers decreases and the bonding quality between layers is improved. Investigation on tensile fracture surface after five passes exhibits ductile failure mechanism.

کلیدواژه‌ها [English]

  • Aluminum Foil
  • Accumulative roll bonding
  • Mechanical properties
  • Fractography
  • Experimental study

[1] Rahmatabadi, D., Hashemi, R., Mohammadi, B. and  Shojaee, T., “Experimental Evaluation of the Plane Stress Fracture Toughness for Ultra-Fine Grained Aluminum Specimens Prepared by Accumulative Roll Bonding Process“ Materials Science and Engineering A, Vol. 708, pp. 301-310, 2017.

[2] Abdollah-Zadeh, A., Saeid, T., Sazgari, B., “Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints“, Journal of Alloys and Compounds, Vol. 460, No. 1, pp. 535-538, 2008.

[3]Mondolfo, L. F., “Aluminum Alloys: Structure and Properties“,  Elsevier, 2013.

[4]Keles, O. and  Dundar, M., “Aluminum Foil: Its Typical Quality Problems and Their Causes“ Journal of Materials Processing Technology, Vol. 186, No. 1-3, pp. 125-137, 2007.

[5]Rahmatabadi, D., Shahmirzaloo, A., Hashemi, R. and  Farahani, M., “Using Digital Image Correlation for Characterizing the Elastic and Plastic Parameters of Ultrafine-Grained Al 1050 Strips Fabricated Via Accumulative Roll Bonding Process“ Materials Research Express, Vol. 6, No. 8, pp. 086542, 2019.

[6]Valiev, R. Z. and  Langdon, T. G., “Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement“ Progress in Materials Science, Vol. 51, No. 7, pp. 881-981, 2006.

[7]Rahmatabadi, D., Tayyebi, M., Hashemi, R. and  Faraji, G., “Microstructure and Mechanical Properties of Al/Cu/Mg Laminated Composite Sheets Produced by the Arb Proces“ International Journal of Minerals, Metallurgy and Materials, Vol. 25, No. 5, pp. 564-572, 2018.

[8]Ouyang, J., Yarrapareddy, E., Kovacevic, R., “Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper“, Journal of Materials Processing Technology, Vol. 172, No. 1, pp. 110-122, 2006.

[9]Rahmatabadi, D., Tayyebi, M., Sheikhi, A. and  Hashemi, R., “Fracture Toughness Investigation of Al1050/Cu/Mgaz31zb Multi-Layered Composite Produced by Accumulative Roll Bonding Process“ Materials Science and Engineering A, Vol. 734, pp. 427-436, 2018.

[10]Rahmatabadi, D., Mohammadi, B., Hashemi, R. and  Shojaee, T., “An Experimental Study of Fracture Toughness for Nano/Ultrafine Grained Al5052/Cu Multilayered Composite Processed by Accumulative Roll Bonding“ Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 140, No. 10, 2018.

 [11]Rahmatabadi, D. and  Hashemi, R., “Experimental Investigation of Fracture Surfaces and Mechanical Properties of Aa1050 Aluminum Produced by Accumulative Roll Bonding Process“ Modares Mechanical Engineering, Vol. 16, No. 10, pp. 305-312, 2016.

[12]Rahmatabadi, D., Tayyebi, M., Hashemi, R. and  Faraji, G., “Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding“ Powder Metallurgy and Metal Ceramics, Vol. 57, No. 3-4, pp. 144-153, 2018.

[13]Saito, Y., “Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (Arb) Process“ Scripta Mater., Vol. 39, No. 9, pp. 1221-1227, 1998.

 [14]Lee, S., Saito, Y., Sakai, T. and  Utsunomiya, H., “Microstructures and Mechanical Properties of 6061 Aluminum Alloy Processed by Accumulative Roll-Bonding“ Materials Science and Engineering: A, Vol. 325, No. 1-2, pp. 228-235, 2002.

[15]Huang, X., Tsuji, N., Hansen, N. and  Minamino, Y., “Microstructural Evolution During Accumulative Roll-Bonding of Commercial Purity Aluminum“ Materials Science and Engineering: A, Vol. 340, No. 1-2, pp. 265-271, 2003.

[16]Park, K.-T., Kwon, H.-J., Kim, W.-J. and  Kim, Y.-S., “Microstructural Characteristics and Thermal Stability of Ultrafine Grained 6061 Al Alloy Fabricated by Accumulative Roll Bonding Process“ Materials Science and Engineering: A, Vol. 316, No. 1-2, pp. 145-152, 2001.

 [17]Mozaffari, A., Manesh, H. and  Janghorban, K., “Evaluation of Mechanical Properties and Structure of Multilayered Al/Ni Composites Produced by Accumulative Roll Bonding (Arb) Process“ Journal of Alloys and Compounds, Vol. 489, No. 1, pp. 103-109, 2010.

 [18]Zhang, R. and  Acoff, V. L., “Processing Sheet Materials by Accumulative Roll Bonding and Reaction Annealing from Ti/Al/Nb Elemental Foils“ Materials Science and Engineering: A, Vol. 463, No. 1, pp. 67-73, 2007.

 [19] Jamaati, R., Toroghinejad, M. R., Najafizadeh, A., “An alternative method of processing MMCs by CAR process“, Materials Science and Engineering: A, Vol. 527, No. 10, pp. 2720-2724, 2010.

 [20] ASTM, E., “Standard Test Methods for Tension Testing of Metallic Materials“ Annual book of ASTM standards. ASTM, 2001.

 [21] Naseri, M., Hassani, A. and  Tajally, M., “Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation“ Ceramics International, Vol. 41, No. 3, pp. 3952-3960, 2015.

 [22] Barsoum, I. and  Faleskog, J., “Rupture Mechanisms in Combined Tension and Shear—Experiments“ International Journal of Solids and Structures, Vol. 44, No. 6, pp. 1768-1786, 2007.

[23] Ceschini, L., Minak, G. and  Morri, A., “Tensile and Fatigue Properties of the Aa6061/20 Vol% Al2o3p and Aa7005/10 Vol% Al2o3p Composites“ Composites Science and Technology, Vol. 66, No. 2, pp. 333-342, 2006.

[24] Yan, H. and  Lenard, J. G., “A Study of Warm and Cold Roll-Bonding of an Aluminium Alloy“ Materials Science and Engineering: A, Vol. 385, No. 1-2, pp. 419-428, 2004.

[25] Rahmatabadi, D., Shahmirzaloo, A., Farahani, M., Tayyebi, M. and  Hashemi, R., “Characterizing the Elastic and Plastic Properties of the Multilayered Al/Brass Composite Produced by Arb Using Dic“ Materials Science and Engineering A, Vol. 753, pp. 70-78, 2019.

 [26] Azushima, A., Kopp, R., Korhonen, A., Yang, D., Micari, F., Lahoti, G., Groche, P., Yanagimoto, J., Tsuji, N. and  Rosochowski, A., “Severe Plastic Deformation (Spd) Processes for Metals“ CIRP Annals, Vol. 57, No. 2, pp. 716-735, 2008.

[27] Alizadeh, M. and  Samiei, M., “Fabrication of Nanostructured Al/Cu/Mn Metallic Multilayer Composites by Accumulative Roll Bonding Process and Investigation of Their Mechanical Properties“ Materials & Design, Vol. 56, pp. 680-684, 2014.

[28]  Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T. and  Hong, R., “Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (Arb) Process“ Scripta materialia, Vol. 39, No. 9, pp. 1221-1227, 1998.

[29] Lee, S., Saito, Y., Tsuji, N., Utsunomiya, H. and  Sakai, T., “Role of Shear Strain in Ultragrain Refinement by Accumulative Roll-Bonding (Arb) Process“ Scripta Materialia, Vol. 46, No. 4, pp. 281-285, 2002.