نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مواد، دانشگاه خواجه نصیرالدین طوسی، تهران

2 استاد، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

3 دانشجوی دکترا، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.

10.22068/jstc.2020.120427.1630

چکیده

کامپوزیت‌های چندلایه الیاف/ فلز یکی از پرمصرف‌ترین کامپوزیت‌های زمینه پلیمری ترکیبی در صنایع هوایی و سازه‌های دریایی هستند که با اتصال بین لایه‌ها‌ی فلزی به لایه‌‌های کامپوزیتی ساخته می-شوند. تلفیق خواص مواد فلزی و کامپوزیتی مهم‌ترین دلیل در استفاده از این کامپوزیت‌‌ها می‌باشد. با توجه به کاربرد این نوع از کامپوزیت‌‌ها در شرایط دمایی مختلف، در تحقیق حاضر، رفتار ضربه‌ای سرعت پایین چارپی کامپوزیت‌‌های چندلایه الیاف/ فلز هوشمند تحت دماهای 45-، 25+ و 90+ درجه سانتی‌گراد مورد بررسی قرار گرفت. کامپوزیت‌‌های چندلایه الیاف/ فلز هوشمند از دو لایه آلومینیوم T6-6061 و چهار لایه رزین اپوکسی تقویت شده با الیاف شیشه ساخته شدند که سیم‌های آلیاژ حافظ‌دار نیز با صفر و 5 درصد پیش‌کرنش در لایه‌ی میانی آنها قرار گرفتند. متغیرهای مورد بررسی در این مطالعه، شامل اثرات تعداد و پیش‌کرنش سیم‌های آلیاژ حافظه‌دار و همچنین اثر دما بر میزان جذب انرژی کامپوزیت‌‌های مذکور بود. نتایج نشان داد که وجود 2 سیم آلیاژ حافظه‌دار، در دماهای 45-، 25+ و 90+درجه‌ سانتی‌گراد، به ترتیب سبب افزایش 20، 14 و 8 درصد جذب انرژی نسبت به نمونه‌های بدون سیم آلیاژ حافظه‌دار شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental investigation of the effect of shape memory alloy wire embedding on the low-velocity impact behavior of fiber metal laminates composites at different temperatures

نویسندگان [English]

  • Mohammadreza Fazlollah-Poor 1
  • Reza Eslami-Farsani 2
  • Hamed Aghamohammadi 3

1 Faculty of the Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

2 Faculty of the Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

3 Faculty of the Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

چکیده [English]

Fiber metal laminates (FMLs) are one of the most widely used hybrid polymeric composites in the aerospace and marine industries that are fabricated using the bonding between the metallic and polymeric layers. The combination of the advantages of both metals and composites is the main reason for the usage of the FMLs. Due to the application of FMLs under different temperature conditions, in the present study, the Charpy impact behavior of smart FMLs in comparison to fiber metal laminate was investigated at temperatures of -45, +25 and 90 °C. FML samples were made of two layers of 6061-T6 aluminum alloy and four layers of glass fiber-reinforced epoxy (GFRE), which shape memory alloy (SMA) wires by zero and 5% pre-strain were placed in the middle layers. The investigated parameters in this study were the number of SMA wires, the pre-strain effect of SMA wires, and also the effect of temperature on the energy absorption values of the FMLs. The results showed that the presence of two SMA wires at temperatures of -45, +25 and + 90 °C respectively caused the increment in the energy absorption by 14, 20 and 8%, compared to the without SMA wire samples.

کلیدواژه‌ها [English]

  • Fiber Metal Laminates (FMLs)
  • shape memory alloy (SMA)
  • Pre-strain
  • impact behavior
  • Different temperature condition

[1] Kaw, A.K., “Mechanics of composite materials,” CRC press, pp. 20-100, 2005.

[2] Vlot, A. and Gunnink, J.W. eds., “Fiber metal laminates: an introduction,” Springer Science & Business Medi, pp. 100-200, 2011.

[3] Osfouri, M., Rahmani, O. and Zamani, M.R., “An Experimental investigation on Nitinol shape memory alloy reinforced GLAREs against Charpy low velocity impact,” In Persian,Vol. , No. 3 pp. 403-414, 2018.

[4] Chai, G.B. and Manikandan, P., “Low velocity impact response of fibre-metal laminates–A review,” Composite Structures, Vol. 107, pp. 363-381, 2014.

[5] Eslami-Farsani, R. and Khazaie, M., “Effect of shape memory alloy wires on high-velocity impact response of basalt fiber metal laminates,” Journal of Reinforced Plastics and Composites, Vol. 37, No. 5, pp. 300-309, 2018.

[6] Wei, Z.G., Sandstrom, R. and Miyazaki, S., “Shape memory materials and hybrid composites for smart systems: Part II Shape-memory hybrid composites,” Journal of Materials Science, Vol. 33, No. 15, pp. 3763-3783, 1998.

[7] Cortes, P., Cantwell, W.J., Kuang, K.S.C. and Quek, S.T., “The morphing properties of a smart fiber metal laminate,” Polymer Composites, Vol. 29, No. 11, pp. 1263-1268, 2008.

[8] Cortes, P., Cantwell, W.J. and Kuang, K.S.,, “The fracture properties of a smart fiber metal laminate,” Polymer composites, Vol. 28, No. 4, pp. 534-544, 2007.

[9] Khalili, S.M.R. and Saeedi, A., “Static and vibration properties of randomly oriented shape memory alloy short wires reinforced epoxy resin,” Journal of Reinforced Plastics and Composites, Vol. 35, No. 14, pp. 1104-1114, 2016.

[10] Saeedi, A. and Shokrieh, M.M., “Effect of shape memory alloy wires on the enhancement of fracture behavior of epoxy polymer,” Polymer Testing, Vol. 64, pp. 221-228, 2017.

[11] Taheri-Behrooz, F., Taheri, F. and Hosseinzadeh, R.,  “Characterization of a shape memory alloy hybrid composite plate subject to static loading,” Materials & Design, Vol. 32, No. 5, pp. 2923-2933, 2011.

[12] Shimamoto, A., Ohkawara, H. and Nogata, F.,  “Enhancement of mechanical strength by shape memory effect in TiNi fiber-reinforced composites,” Engineering fracture mechanics, Vol. 71, No. 4-6, pp. 737-746, 2004.

[13] Xu, L.D., Shi, M.F., Sun, X.Y., Wang, Z.Q. and Yang, B., “Mechanical Properties and Interlaminar Fracture Toughness of Glass‐Fiber‐Reinforced Epoxy Composites Embedded with Shape Memory Alloy Wires,” Advanced Engineering Materials, Vol. 20, No. 3, pp. 1700646, (2018).

[14] Ramezani Parsa, A., Eslami-Farsani, R., “Influence of pre strain shape memory alloy wire on impact properties of smart fibers metal composite,” Modares Mechanical Engineering, In Persian, Vol. 17, No. 4, pp. 322-330, 2017.

[15] Mohaseb Karimlou, M., Eslami-Farsani, R., “Influence of pre-strain and position of shape memory alloy wire on buckling properties of smart fibers metal composite,” Modares Mechanical Engineering, In Persian, Vol. 17, No. 11, pp. 429-436, 2018.

[16] Li, H., Liu, J., Wang, Z., Yu, Z., Liu, Y. and Sun, M., “The low velocity impact response of shape memory alloy hybrid polymer composites,” Polymers, Vol. 10, No. 9, pp. 1026, 2018.

[17] Khalili, S.M.R. and Saeedi, A., “Experimental investigation on the debonding strength in shape memory alloy wire reinforced polymers,” Mechanics of Advanced Materials and Structures, Vol. 24, No. 6, pp. 490-495, 2017.

[18] Lau, K.T., Chan, A.W.L., Shi, S.Q. and Zhou, L.M., “Debond induced by strain recovery of an embedded NiTi wire at a NiTi/epoxy interface: micro-scale observation,” Materials & design, Vol. 23, No. 3, pp. 265-270, 2002.

[19] Taheri-Behrooz, F. and Kiani, A., “Simulation of thermo-mechanical behavior of glass-epoxy composites containing shape memory alloy under static loading,” Journal of Science and Technology of Composites, In Persian, Vol. 3, No. 2, pp. 111-122, 2016.

[20] Poon, C.K., Lau, K.T. and Zhou, L.M., “Design of pull-out stresses for prestrained SMA wire/polymer hybrid composites,” Composites Part B: Engineering, Vol. 36, No. 1, pp. 25-31, 2005.

[21] Lei, H., Wang, Z., Zhou, B., Tong, L. and Wang, X., Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model,” Materials & Design, Vol. 40, No. 5, pp. 138-147, 2012.

[22] Poon, C.K., Lau, K.T. and Zhou, L.M.,, “Design of pull-out stresses for prestrained SMA wire/polymer hybrid composites,” Composites Part B: Engineering, Vol. 36, No. 1, pp. 25-31, 2005.

[23] Kang, K.W. and Kim, J.K., “Effect of shape memory alloy on impact damage behavior and residual properties of glass/epoxy laminates under low temperature.” Composite Structures, Vol.88, No. 3, pp. 455-460, 2009.

[24] Pazhanivel, K., Bhaskar, G.B., Elayaperumal, A., Anandan, P. and Arunachalam, S., “Influence of SMA reinforcement on the impact resistance of GFRP composite laminates under different temperatures,” Bulletin of Materials Science, Vol. 39, No. 3, pp. 889-899, 2016.

[25] Salehi-Khojin, A., Bashirzadeh, R., Mahinfalah, M. and Nakhaei-Jazar, R., “The role of temperature on impact properties of Kevlar/fiberglass composite laminates,” Composites Part B: Engineering, Vol. 37, No. 7-8, pp. 593-602, 2006.

[26] Aghamohammadi, H., Abbandanak, S.N.H., Eslami-Farsani, R. and Siadati, S.H., “Effects of various aluminum surface treatments on the basalt fiber metal laminates interlaminar adhesion,” International Journal of Adhesion and Adhesives, Vol. 84, pp. 184-193, 2018.

[27] Cohades, A. and Michaud, V., “Shape memory alloys in fibre-reinforced polymer composites,” Advanced Industrial and Engineering Polymer Research, Vol. 1, No. 1, pp. 66-81, 2018.