نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 استادیار، مهندسی مواد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در این پژوهش از یک روش نوین جهت افزایش محتوای نانوذرات آلومینا در پوشش های کامپوزیتی پایه نیکل آبکاری شده با جریان پالسی استفاده شد. متانول، اتانول و فرمالدهید به عنوان مواد آلی به صورت جزئی به محلول وات اضافه شدند و پوشش های نانوکامپوزیتی نیکل آلومینا در حضور همگن سازی هم زمان اولتراسونیک و مگنتیک ایجاد شدند. بعد از فرایند پوشش دادن، تاثیر حضور این حلال های آلی در محلول آبکاری با مقایسه سطح مقطع پوشش های نانوکامپوزیتی، با استفاده از میکروسکوپ الکترونی روبشی (FESEM) مجهز به طیف‌سنج پراش انرژی پرتو ایکس (EDS)، بررسی شد. رفتار سایشی و سختی پوشش های نانو کامپوزیتی آبکاری شده به وسیله آزمایش گوی روی دیسک ارزیابی شد. مطالعات ریزساختاری نشان داد که مقدار نانوذرات در پوشش های ایجاد شده با محلول وات بدون حلال آلی 2.1 wt.% است و این مقدار با افزودن حلال های آلی افزایش می یابد. به طوری که، بیشینه مقدار نانوذرات در این تحقیق (5.2 wt.%) با افزودن متانول به دست می آید. سختی سطحی پوشش های ایجاد شده با محلول وات 301 Hv بود که با افزودن متانول به 485 Hv افزایش یافت. آزمایش های سایش نیز نشان داد که افزودن متانول، مقاومت سایشی را بیش از دو برابر نسبت به الکترولیت بدون حلال آلی افزایش می دهد. بررسی میکروسختی پوشش ها موید این واقعیت است که افزایش نانوذرات تقویت کننده و میکروسختی در اثر استفاده از حلال آلی متانول سبب تقویت مکانیکی لایه اکسیدی و ایجاد بیشترین مقاومت سایشی در نانوکامپوزیت های آبکاری شده می شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Mechanical behavior of Ni-Al2O3 nanocomposite coatings electroplated in the precence of organic compounds

نویسندگان [English]

  • Sadegh Mirzamohammadi 1
  • Hamid Khorsand 2
  • Mahmood Aliofkhazraei 3

1 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

3 Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran

چکیده [English]

In this study, a novel method was used to increase alumina nanoparticles content in nickel base composite coatings plated by pulse current. Methanol, ethanol and formaldehyde were partially added to the Watt’s solution as organic substances and nickel alumina nanocomposite coatings were produced adopted by simultaneous ultrasonic and magnetic homogenizing. After electroplating, the effect of these organic solvents was investigated by comparison of cross sectional observation of the coatings by field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray analysis (EDX). The hardness and wear behavior of electroplated nanocomposite coatings were evaluated by ball on disk test at room temperature and ambient air. Microstructures studies showed that the amount of incorporated nanoparticles in the coatings plated with the electrolyte without organic solvent is 2.1 wt. % and this amount increases with the addition of organic solvents. So that, the maximum amount of nanoparticles in this study (5.2 wt. %) is achieved by adding methanol. Surface hardness of the coatings plated with Watt’s solution was 301 Hv which increased to 485 Hv with adding methanol. Wear tests also showed that the addition of methanol increased the wear resistance twice more than the electrolyte without organic solvent. The microhardness investigation verifies this fact that increasing of reinforcement nanoparticles and coating’s microhardness due to adding methanol provides the oxide layer’s mechanical strength and creates the highest wear resistance in the plated nanocomposites.

کلیدواژه‌ها [English]

  • Nickel alumina nanocomposites
  • Organic substances
  • Pulse electrodepostion
  • Microhardness
  • Wear

 

[1] Ahmadifard, S. Shahin, N. Kazemi, Sh. Heidarpour, A. Shirazi, A., “Fabrication of A5083/SiC Surface Composite By Friction Stir Processing And Its Characterization,” In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 4, pp. 31-36, 2016.

[2]  Chiu, S.Y. Chung, S.T. Lin, C.Y. Tsai, W.T., “Electrodeposition of Ni-Al2O3 Composite Coatings Employing Supercritical CO2 Baths,” Surface and Coatings Technology, Vol. 247, pp. 68-73, 2014.

[3] Lin, Y. Ikeda, S. Septina W. Kawasaki, Y. Harada, T. Matsumura, M., “Mechanistic Aspects Of Preheating Effects Of Electrodeposited Metallic Precursors On Structural And Photovoltaic Properties Of Cu2ZnSnS4 Thin Films,” Solar Energy Materials and Solar Cells, Vol. 120, Part A, pp. 218-25, 2014.

[4] Ghorbani, M., “Coating (1)”, In Persian, Second ed., Sharf Universitu Publication, Tehran, pp. 110-121, 2005.

[5] Mirzamohammadi, S. Aliov, M.K. Sabour Rouh A. Velashjerdi, A. Naimi-Jamal, M.M.R., “Tribological Properties of Tertiary Al2O3/CNT/Nanodiamond Pulsed Electrodeposited Ni–W Nanocomposite”, Materials Science and Technology, Vol. 27, pp. 546-50, 2011.

[6] Yousefpour, H. and Akbari Mousavi, S.A.A., “Investigations On Microstructure, Wear Behavior And Corrosion Resistance Of Brass/Graphite Composite Produced By Friction Stir Processing”, In Persian, Journal of Science and Technology of Composites, In Press, 2016.

[7] Kartal, M. Uysal, M. Gul, H. Alp, A. Akbulut, H., “Effect of Surfactant Concentration In The Electrolyte On The Tribological Properties Of Nickel-Tungsten Carbide Composite Coatings Produced By Pulse Electro Co Deposition,” Applied Surface Science, Vol. 354, Part B, pp.328-36, 2015.

[8] Mohajeri, S. Dolati, A. Rezagholibeiki, S., “Electrodeposition of Ni/WC Nanocomposite in Sulfate Solution,” Materials Chemistry and Physics, Vol. 129, pp.746-50, 2011.

[9] Nasre esfahani, A.R. Daneshi, S.J. Farmanesh, K., “Effect of Zeta Potential on Deposition of Alumina Particles in Composite Coatings Obtained from Pulse Current,”, In Persian, Journal of Advanced Design and Manufacturing Technolog Vol. 4, pp.13-19, 2009.

[10] Huang, W. Zhao, Y. and Wang, X., “Preparing a High-Particle-Content Ni/Diamond Composite Coating with Strong Abrasive Ability,” Surface and Coatings Technology, Vol. 235, pp. 489-94, 2013.

[11] Wang, L. Gao, Y. Liu, H. Xue, Q. and Xu, T., “Effects of Bivalent Co Ion On The Co-Deposition Of Nickel And Nano-Diamond Particles,” Surface and Coatings Technology, Vol. 191, pp. 1-6, 2005.

[12] Lajevardi, S.A. and Shahrabi, T., “Effects of Pulse Electrodeposition Parameters on the Properties of Ni–TiO2 Nanocomposite Coatings,” Applied Surface Science, Vol. 256, pp. 6775-81, 2010.

[13] Lee, D. Gan, Y.X. Chen, X. and Kysar, J.W., “Influence of Ultrasonic Irradiation on The Microstructure of Cu/Al2O3, CeO2 Nanocomposite Thin Films During Electrocodeposition,” Materials Science and Engineering A, Vol. 447, pp. 209-16, 2007.

[14] Low, C. Wills, R. and Walsh, F., “Electrodeposition of Composite Coatings Containing Nanoparticles In A Metal Deposit,” Surface and Coatings Technology, Vol. 201, pp. 371-83, 2006.

[15] Hou, F. Wang, W. Guo, H. “Effect of the Dispersibility of ZrO2 Nanoparticles in Ni–ZrO2 Electroplated Nanocomposite Coatings on the Mechanical Properties of Nanocomposite Coatings,” Applied Surface Science, Vol. 252, pp.3812-7, 2006.

[16] Shrestha, N.K, and Saji, T., “Non-Aqueous Composite Plating Of Ni-Ceramic Particles Using Ethanol Bath And Anti-Wear Performance Of The Coatings,” Surface and Coatings Technology, Vol. 186, pp. 444-9, 2004.

[17] Thiemig, D. and Bund, A., “Influence of Ethanol On The Electrocodeposition Of Ni/Al2O3 Nanocomposite Films,” Applied Surface Science, Vol. 255, pp. 4164-70, 2009.

[18] Gores, H.J. and Barthel, J.M.G., “Nonaqueous Electrolyte Solutions: New Materials For Devices And Processes Based On Recent Applied,” IUPAC Conference on Chemical Thermodynamics, 13th, Clermont-Ferrand, France, 1994.

[19] Kaisheva, M. and Fransaer, J., “Influence of the Surface Properties Of Sic Particles On Their Codeposition With Nickel,” Journal of The Electrochemical Society, Vol. 151, pp. 89-96, 2004.

[20] Kuo, S.L. Chen, Y.C. Ger, M.D. and Hwu, W.H., “Nano-particles Dispersion Effect on Ni/Al2O3 Composite Coatings,” Materials Chemistry and Physics, Vol. 86, pp. 5-10, 2004.

[21] Gül, H. Kılıç, F. Uysal, M. Aslan, S. Alp, A. and Akbulut, H., “Effect of Particle Concentration On The Structure And Tribological Properties Of Submicron Particle Sic Reinforced Ni Metal Matrix Composite (MMC) Coatings Produced By Electrodeposition,” Applied Surface Science, Vol. 258, pp. 4260-7, 2012.

[22] Lekka, M. Lanzutti, A. Casagrande, A. de Leitenburg, C. Bonora, P. and Fedrizzi, L., “Room and High Temperature Wear Behaviour Of Ni Matrix Micro-And Nano-Sic Composite Electrodeposits,” Surface and Coatings Technology, Vol. 206, pp. 3658-65, 2012.

[23] Dieter, G. “Mechanical Metallurgy” In Persian, Third ed., Uinivesity Publication Center, Tehran, pp. 225-229, 2009.

[24] Baghery, P. Farzam, M. Mousavi, A. and Hosseini, M., “Ni–TiO2 Nanocomposite Coating with High Resistance to Corrosion and Wear,” Surface and Coatings Technology, Vol. 204, pp. 3804-10, 2010.

[25] García-Lecina, E. García-Urrutia, I. Díez, J. Salvo, M. Smeacetto, F. and Gautier, G., “Electrochemical Preparation And Characterization Of Ni/Sic Compositionally Graded Multilayered Coatings,” Electrochimica Acta,Vol. 54, pp.2556-62, 2009.

[26] Borkar, T. and Harimkar, S.P. “Effect of Electrodeposition Conditions and Reinforcement Content on Microstructure And Tribological Properties Of Nickel Composite Coatings,” Surface and Coatings Technology, Vol. 205, pp. 4124-34, 2011.

[27] Mazaheri, H. Fazel Najafabadi, M. and Alaei. A., “Study of Microstructure and Tribological Behavior of the Composite Layer Produced of Silicon Carbide Particles on a Steel ASTM A106 GTAW Welding Method,” In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 65-72, 2015.

[28] Hutchings, I.M., “Tribology: Friction and Wear of Engineering Materials,” Edward Arnold, pp. 175-181, 1992.