نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مواد، دانشگاه آزاد اسلامی، کرج

2 دانشیار، مهندسی مواد، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشجوی کارشناسی ارشد، مهندسی مواد، دانشگاه علم و صنعت ایران، تهران،ایران

چکیده

هدف از این تحقیق بررسی فصل مشترک کامپوزیت آلومینیم- مس حاصله از ریخته‌گری گریز از مرکز مذاب آلومینیم درون بوش جامد مسی است. در این تحقیق مقدار مشخصی مذاب آلومینیم خالص تجاری (100 گرم) درون بوش مسی پیش‌گرم شده تا دمای 150 درجه‌ی سانتی‌گراد و درحال چرخش با سرعت‌های دوران 700، 900، 1500 و 3000 دور بر دقیقه درون دستگاه ریخته‌گری گریز از مرکز عمودی ریخته‌گری شد. به منظور بررسی فصل مشترک واکنشی از میکروسکوپ نوری (OM) و میکروسکوپ الکترونی روبشی (SEM) مجهز به سیستم آنالیز EDS استفاده و نیز سنجش میکروسختی فازها انجام شد. افزایش سرعت چرخش با افزایش نیروی گریز از مرکز موجب افزایش آهنگ سردکنندگی شده و به این ترتیب شرایط را برای ظریف‌تر شدن ساختار و نازک‌تر شدن فصل مشترک واکنشی فراهم می‌آورد. نتایج آنالیز نقطه‌ای (EDS) نشان داد فازهای شکل گرفته به ترتیب از سمت مس شامل: لایه‌های پیوسته‌ی AlCu2، AlCu، Al2Cu، رسوبات Al2Cu پراکنده در ساختار یوتکتیک غیرعادی و نهایتا ساختار یوتکتیک غیرعادی α-Al/Al3Cu در مجاورت آلومینیم است.  نتایج تغییرات میکروسختی، از فازهای حاضر در فصل مشترک واکنشی، نیز گویای روند کاهشی سختی در دو سمت آلومینیم و  مس و بروز حداکثر سختی در ترکیبات بین فلزی بیشتر از 500 ویکرز، نزدیک به رینگ مس جامد، است.

کلیدواژه‌ها

عنوان مقاله [English]

Interface characterization of aluminum-copper bimetal composite produced via centrifugal casting

نویسندگان [English]

  • Ehsan Hiteh 1
  • Mehdi Divandari 2
  • Morteza Gholami 3

1 - School of Materials Engineering, Islamic Azad University of Karaj, Karaj, Iran

2 - School of Materials Engineering, Iran University of Science and Technology, Tehran, Iran

3 School of Materials Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

The aim of this research is to investigate interface evolution during centrifugal casting of Al-Cu bimetal composite. In this work, 100 grams aluminum melt was cast into a 150°C preheated Cu cylindrical bush rotating at 700, 900, 1500, and 3000 rotation per minute (rpm) inserted in a vertical centrifugal casting (VCC) machine. Obtained samples were studied using optical microscope (OM) and scanning electron microscopy (SEM) equipped with EDS system and also microhardness test on various available phases. Centrifugal force, due to the rotational speed, leads to increase in the cooling rate. Cooling rate increment not only causes thinning the interface but also with increasing nucleation sites leads to modify the resulted microstructure. EDS results showed that the achieved interface consisted of four discrete layers from the Cu side, including Cu2Al, AlCu, Al2Cu continuous layers, Al2Cu precipitates scattering in anomalous eutectic structures and finally α-Al/Al3Cu anomalous eutectic structure near the Al side. Micro hardness measurements showed that hardness of various presented phases decreases in both Al and Cu side but have a maximum pick, more than 500 Vickers, near to Cu bush as a result of intermetallic compound formation.

کلیدواژه‌ها [English]

  • Aluminum-Copper Composite
  • centrifugal casting
  • interface
  • Intermetallic Compound

[1]  Aguado, E. Baquedano, A. Uribe, U. Fernández-Calvo, A. L. and Niklas, A., "Comparative Study Of Different Interfaces Of Steel Inserts In Aluminium Castings", Materials Science Forum, Vol. 765, pp. 711-715, 2013.

[2]  Mori, K. Fujita, N. Horie, H. Mori, S. Miyashita, T. and Matsuda, M., "Heat Transfer Promotion of an Aluminum-Brass Cooling Tube by Surface Treatment with Triazinethiols", American Chemical Society, Vol. 7, pp. 1161-1166, 1991.

[3]  Corabieru, A. Velicu, S. Zait, D. Corabieru, P. and Vasilescu D. D., “Bimetallic Light Automotive Parts Obtained From Liquid Phase”, Wisconsin, USA, pp. 89-94, 2008.

[4]  Yangqin L. Xiaodong S. Hongbing Y. Yongzhe Z. and Lulu Q., "Compound Pipes in Oil and Gas Engineering", Shanghai, China, pp.18-21, 2009.

[5]  Springer, H. Szczepaniak, A. and Raabe, D., "On The Role Of Zinc On The Formation And Growth Of Intermetallic Phases During Interdiffusion Between Steel And Aluminium Alloys", Acta Materialia, Vol. 96, pp. 203–211, 2015.

[6]  Choe, K. H. Park, K. S. Kang, B. H. Cho, G. S. Kim, K. Y. Lee, K. W. Kim, M. H. Ikenaga, A. and Koroyasu, S., "Study of the Interface between Steel Insert and Aluminum Casting in EPC", J. Mater. Sci. Technol, Vol. 24, No. 1, pp. 60-64, 2008.

[7]  Simsir, M. Kumruog lu, L. C. and Ozer, A., "An Investigation Into Stainless-Steel/Structural-Alloy-Steel Bimetal Produced By Shell Mould Casting", Materials and Design, Vol. 30, pp. 264-270, 2009.

[8]  Baumeister, G. Buqezi-Ahmeti, D. Glaser, J. and Ritzhaupt-Kleissl, H. J., "New Approaches In Microcasting: Permanent Mold Casting And Composite Casting", Microsyst Technol, Vol. 17, pp. 289–300, 2011.

[9]  Zare, G. R. Divandari, M. and Arabi, H., "Investigation On Interface Of Al/Cu Couples In Compound Casting", Materials Science and Technology, Vol. 29, No. 2, pp. 190-196, 2013.

[10]   Yongning, L. Yiqing, C. Bernard, F. R. and Chunhui, Y., "Finite Element Analysis of Residual Stresses in Metallic Coatings through a Compound Casting", Applied Mechanics and Materials, Vol. 553, pp. 48-53, 2014.

[11]   Dybkov, V. I., "Reaction diffusion in heterogeneous binary systems", Journal of materials science, Vol. 21, pp. 3078 3084, 1986.

[12]   Zhou, J. X. Shen, X. Yin, Y. J. Guo, Z. and Wang, H., "Gas-liquid Two Phase Flow Modelling of Incompressible Fluid and Experimental Validation Studies in Vertical Centrifugal Casting", Materials Science and Engineering, Vol. 84, 2015.

[13]   Chirita, G. Stefanescu, I. Soares, D. and Silva, F. S., "Effect of Gravity/ Vibration/ Centrifugal Process on Mechanical Properties of an Al-Si Alloy", Materials Science Forum, Vol. 587-588, pp. 395-399, 2008.

[14]   Shiping, W. Qin, X. and Xiang, X., "The Solidified Structure and Macrosegregation of Wedge-shaped Titanium Castings Produced by Vertical Centrifugal Casting Process", Advanced Materials Research, Vol. 317-319, pp. 456-459, 2011.

[15]   Shi-ping, W. Chang-yun, L. Jing-jie, G. U. Yan-qing, S. Xiu-qiao, L. and Heng-zhi U., "Numerical Simulation And Experimental Investigation Of Two Filling Methods In Vertical Centrifugal Casting", Trans. Nonferrous Met. Soc. China, Vol. 16, pp. 1035-1040, 2006.

[16]   Chang, S. R. Kim, J. M. and Hong, C. P., "Numerical Simulation of Microstructure Evolution of Al Alloys in Centrifugal Casting", ISIJ International, Vol. 41, pp. 738-747, 2001.

[17]   Daming, X. Limin, J. and Hengzhi, F., "Effects Of Centrifugal And Coriolis Forces On The Mold-Filling Behavior Of Titanium Melts In Vertically Rotating Molds", Research & Development, Vol. 5, pp. 249-257, 2008.

[18]   Changyun, L. Haiyan, W. Shiping, W. Lei, X. Kuangfei, W. and Hengzhi, F., "Research on Mould Filling and Solidification of Titanium Alloy in Vertical Centrifugal Casting", Rare Metal Materials and Engineering, Vol. 39, No. 3, pp. 388-392, 2010.

[19]   Beeley, P., "Foundry Technology", Linacre House, Jordan Hill, Oxford OX2 8DP, 2001.

[20]   Limin, J. Daming, X. Min, L. and Fu, H., "Casting Defects of Ti-6Al-4V Alloy in Vertical Centrifugal Casting Processes with Graphite Molds", Met. Mater. Int, Vol. 18, No. 1, pp. 55-61, 2012.

[21]   Hajjari, E. Divandari, M. Razavi, S. H. Homma, T. and Kamado, S., "Microstructure Characteristics and Mechanical Properties of Al 413/Mg Joint in Compound Casting Process", Metallurgical and Materials Transactions A, Vol. 43, pp. 4667-4677, 2012.

[22]   Divandari, M. and Campbell, J., "Morphology Of Oxide Films Of Al–5Mg Alloy In Dynamic Conditions In Casting", International Journal of CastMetals Research, Vol. 18, No. 3, pp. 187-192, 2005.

[23]   Suzuki, K. and Yao, M., "Simulation of Mold Filling and Solidification during Centrifugal Precision Casting of Ti-6Al-4V Alloy", Metals and Materials International, Vol. 10, No. 1, pp. 33-38, 2004.

[24]   Wei, B. and Herlach, D. M., "Rapid Solidification Of Undercooled Eutectic And Monotectic Alloys", Materials Science and Engineering A,Vol. 173, pp. 357 -361, 1993.

[25]   Liu, X. R. Cao, C. D. and Weisheng, B., "Microstructure Evolution And Solidification Kinetics Of Undercooled Co–Ge Eutectic Alloys", Scripta Materialia, Vol. 46, pp. 13–18, 2002.

[26]   Prasad, K. S. K. Murali, M. S. and Mukunda, P. G., "Analysis Of Fluid Flow In Centrifugal Casting", Front. Mater. Sci., Vol. 4(1), pp. 103-110, 2010.

[27]   Fu, H. Xiao, Q. and Xing J., "A Study Of Segregation Mechanism In Centrifugal Cast High Speed Steel Rolls", Materials Science and Engineering A, Vol. 479, pp. 253-260, 2008.

[28]   Sarkar, S. Lohar, A. K. and Panigrahi, S. C., "Vertical Centrifugal Casting of Aluminum Matrix Particle Reinforced Composites", Journal of Reinforced Plastics And Composites, Vol. 28, No. 8, pp. 1013-1020, 2009.