نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشجوی کارشناسی ارشد، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 دانشجوی دکترا، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران ، ایران

چکیده

حضور میکروترک‌های عمقی در سازه‌های کامپوزیتی از جمله آسیب‌هایی به‌شمار می‌رود که در صورت مشاهده باید سازه را جایگزین نمود. پدیده خودترمیمی که از سیستم‌های بیولوژیکی مانند شبکه آوندی در گیاهان یا شبکه مویرگی در جانوران الهام گرفته‌ شده است، روشی مناسب برای رفع عیوب و ترمیم میکروترک‌ها است. در این پژوهش با بهره‌گیری از سیستم خودترمیمی، به ترمیم میکروترک‌ها و آسیب‌های ایجاد شده در یک سازه کامپوزیتی پرداخته شده است. بدین منظور از یک سری میکرولوله‌های شیشه‌ای برای ایجاد مکانیزم ترمیم‌شوندگی استفاده شد. این میکرولوله‌ها با نوعی ماده ترمیم‌کننده که شامل رزین به همراه هاردنر انیدریدی بود، پر شدند. زمانی‌که سازه تحت بارگذاری قرار گیرد و در اثر آن آسیب یا میکروترک‌ در نمونه مشاهده شود، با برخورد این ترک‌ها به میکرولوله‌ها، لوله‌ها شکسته شده و ماده درون آن‌ها در محل آسیب جریان پیدا می‌کند که با گذشت زمان باعث حذف آسیب می‌شود. هدف از پژوهش حاضر بررسی کسر حجمی مناسب و زمان مطلوب برای مشاهده پدیده ترمیم‌شوندگی است. بدین منظور میکرولوله‌های شیشه‌ای حاوی مواد ترمیمی انیدریدی با کسرهای حجمی 2، 4 و 6 درصد در کامپوزیت‌های اپوکسی تقویت شده با الیاف کربن تعبیه شدند. خواص خمشی نمونه‌ها با گذشت زمان‌های مختلف پس از ایجاد آسیب بررسی شد. بیشترین مقدار بازیابی استحکام خمشی به میزان 84 درصد برای نمونه حاوی 4 درصد حجمی ماده ترمیمی با گذشت 8 روز پس از ایجاد آسیب مشاهده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Mechanical properties of carbon fibers/epoxy composite containing anhydride self-healing material under transverse loading

نویسندگان [English]

  • Reza Eslami-Farsani 1
  • Amin Sari 2
  • Hamed Khosravi 3

1 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

3 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

چکیده [English]

In the case of presence of deep micro-cracks within the composite structures, they must be replaced. The self-healing phenomenon which is inspired from the biological systems such as vascular networks in plants or capillary networks in animals is an appropriate strategy to control the defects and micro-cracks. In the present research, by taking accounts the advantages of self-healing concept, an attempt has been made to control the micro-cracks and damages which were created in composite structures. To do so, a series of micro glass tubes were employed to provide a self-healing system. These micro-tubes were filled with epoxy resin + anhydride as a healing agent. When the structure is subjected to loading conditions, some damages or micro-cracks are created. In this situation, the micro glass tubes will rupture and the healing agent flows in the damage area, leading to the elimination of the defects over a time span. The aim of this study is to find out the appropriate micro glass tubes volume fraction and healing time to obtain an efficient healing. For this purpose, glass micro-tubes containing various anhydride agent loadings of 2, 4 and 6 vol. % were incorporated in epoxy-carbon fibers composites and the bending behavior of the specimens were assessed during different time span from defect creation. The highest bending strength recovery of 84% was observed for the specimen with 4% healing agent after 8 days

کلیدواژه‌ها [English]

  • Epoxy-carbon fibers composite
  • Self-healing phenomenon
  • Anhydride hardener
  • Bending behavior
 
[1] Samadzadeh, M. Boura, H. S. and Peikari, M., “A Review on Self-healing Coatings Based on Micro/nanocapsules”, Progress in Organic Coatings, Vol. 68, pp. 159-164, 2010.
[2] Zeng, C. Seino, H. Ren, J. Hatanaka, K. and Yoshie, N., “Self-healing Bio-based Furan Polymers Cross-linked with Various Bis-maleimides” Polymer, Vol. 54, pp. 5351-5357, 2013.
[3] Emaami, M. Aram, E. and Mahdavian, A., “Smart polymer: Self-healing Polymers”, polymerization, Vol. 3, pp. 27-38, 2013.
[4] Blaiszik, B. Kramer, B. Olugebefola, S. Moore, J. S. and Sottos, N. R., “Self-Healing Polymers and Composites”, Annual Review Material Research, Vol. 40, pp. 179-211, 2010.
[5] Blaiszik, B. Sottos, N.R. and White, S. R., “Nanocapsules for Self-Healing Materials”, Composite Science and Technology, Vol. 68, pp. 978-986, 2008.
[6] Gerald, O. Wilson, H. and Anderson, M., “Self-healing Polymers”, Inc Champaign, Illinois, John Wiley & Sons, pp. 1-33, 2010.
[7] Li, Q. Mishra, A. K. Kim, N. H. Kuila, T. and Lee, J. H., “Effects of Processing Conditions of Poly(methylmethacrylate) Encapsulated Liquid Curing Agent on the Properties of Self-Healing Composites”, Composites: Part B, Vol. 49, pp. 6-15, 2013.
[8] Rule, J.D. Sottos, N.R. and White, S. R., “Effect of Microcapsule Size on the Performance of Self-healing Polymers”, Polymer, Vol. 48, pp. 3520-3529, 2007.
[9] Zhu, D. Y. Rong, M. Z. and Zhang, M. Q., “Preparation and Characterization of Multilayered Microcapsule-Like Microreactor for Self-Healing Polymers”, Polymer, Vol. 54, pp. 4227-4236, 2013.
[10] Caruso, M. Blaiszik, B. J. Jin, H. Schelkopf, S.R. Stradley, D.S. Sottos, N.R. White, S.R. and Moore J.S., “Robust, Double-Walled Microcapsules for Self-Healing Polymeric Materials”, American Chemical Society, Vol. 2, pp. 1195-1199, 2010.
[11] Brown, N. Sottos, N. R. and White, S. R., “Fracture Testing of a Self-Healing Polymer Composite”, Experimental Mechanics, Vol. 42, pp. 372-379, 2002.
[12] Jin, H. Miller, G. M. Sottos, N. R. and White, S. R., “Fracture and Fatigue Response of a Self-Healing Epoxy Adhesive”, Polymer, Vol. 52, pp. 1628-1634, 2010.
[13] Jin, H. Miler, G. M. Pety, J. S. Griffin, A. S. Stradley, D. S. D. Roach, D. Sottos, N. R. and White, S. R., “Fracture Behavior of a Self-Healing, Toughened Epoxy Adhesive”, International Journal of Adhesion & Adhesives, Vol. 44, pp. 157-165, 2013.
[14] Curtis, P. and Ttavis, S., “Hollow Carbon Fiber for Performance Polymer Composite”, Plastics, Rubber and Composites, Vol. 28, pp. 201-209, No 5, 1999.
[15] Dry, C. and Sottos, N. R., “Passive Smart Self-Repair in Polymer Matrix Composite Materials”, Smart Structures and Materials, Vol. 16, pp. 438-444, 1993.
[16] Erin, B. and Wuld, F., “Procedures Smart Self-Repair of Polymer Matrix Composite Materials”, Composite Structures, Vol. 35, pp. 263-269, 1996.
[17] Bleady, S. and Loader, C. B., “A Smart-Repair System for Polymer Composite”, Composites: Part A, Vol. 32, pp. 1767-1776, 2001.
[18] Trask, R.S. and Bond, I., “Biomimetic Self-healing of Advanced Composite Structure using Hollow Glass Fiber”, Smart Materials Structures, Vol. 15, pp.704-710, 2006.
[19] Williams, G. Bond, I. and Trask, R., “Compression after Impact Assessment of Self-healing CFRP”, Composites: Part A, Vol. 40, pp. 1399-1406, 2009.
[20] Therriaul, D. Scott, R. N. and Lewis, J. A., “Chaotic Mixing in Three-Dimensional Microvascular Networks Fabricated by Direct-Write Assembly”, Nature Materials, Vol. 2, pp. 265-271, 2003.
[21] Lim, D. Mazumder, J. and Takayama, S., “Fabrication of Microfluidic Mixers and Artificial Vasculatures using a High-Brightness Diode-Pumped Nd: YAG Laser Direct Write Method”, The Royal Society of Chemistry, Vol. 3, pp. 318-323, 2003.
[22] Christopher, J. N. Gregory, J. M. Michael, J. O. Bond, I. and Trask, R. S., “Self-Healing Fiber Reinforced Composites via a Bioinspired Vasculature”, Advanced Functionized Materials, Vol. 21, pp. 3624-3633, 2011.
[23] Noskov, M. D. and Malinovski, A. S., “Experimental Study and Simulation of Space Charge Stimulated Discharge”, Applied Physics, Vol. 92, pp. 4926-4934, 2002.
[24] Huang, J.H. Kim, J. Agrawal, N. and Sudarsan, A.P., “Rapid Fabrication of Bio-inspired 3D Microfluidic Vascular Networks”, Advanced Materials, Vol. 21, pp. 3567-3571, 2009.
[25] Patel, A.J. Sottos, N.R. Wetzel, E.D. and White, S. R., “Autonomic Healing of Low-Velocity Impact Damage in Fiber-Reinforced Composites”, Composites: Part A, Vol. 41, pp. 360-368, 2010.
[26] Li, Q. Kim, N.H. Hui, D. and Lee, J.H.,” Effects of Dual Component Microcapsules of Resin and Curing Agent on the Self-Healing Efficiency of Epoxy” Composites: Part B, Vol. 55, pp. 79-85, 2013.
[27] Coope, T. S. Wass, D. F. Trask, R. S. and Bond, P., “Repeated Self-Healing of Microvascular Carbon Fiber Reinforced Polymer Composites”, Smart Materials Structures, Vol. 23, pp. 115002-115018, 2014.
[28] Mangun, C. L. Mader, A. C. Sottos, N. R. and White, S. R., “Self-Healing of a High Temperature Cured Epoxy using Poly(dimethylsiloxane) Chemistry”, Polymer, Vol. 51, pp. 4063-4068, 2010.
[29] Asadi, J. Ebrahimi, N.G. and Razzaghi, M., “Self-healing Property of Epoxy/Nanoclay Nanocomposite using Poly (ethylene-co-methacrylic acid) Agent”, Composites: Part A, Vol. 68, pp. 56-61, 2015.