نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار، دانشکده مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 کارشناسی ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در تحقیق حاضر، تاثیر افزودن نانولوله‌های کربنی بر رفتار کششی و خمشی کامپوزیت‌های زمینه اپوکسی تقویت‌شده با الیاف بازالت بررسی شد. در گام نخست و به‌منظور برهم‌کنش مطلوب‌تر نانولوله‌ها با زمینه اپوکسی، اصلاح سطحی آن‌ها به وسیله عامل تری گلیسیداکسی پروپیل تری متوکسی سیلان صورت گرفت که در ادامه ایجاد گروه‌های عاملی روی سطح نانولوله‌های کربنی به‌وسیله آزمون طیف‌سنجی مادون قرمز (FTIR) تایید شد. نانولوله‌های کربنی اصلاح‌ سطحی‌شده در درصدهای وزنی مختلف نسبت به زمینه (0، 1/0، 3/0 و 5/0 درصد) و از طریق روش‌های همزدن مکانیکی و آلتراسونیک در زمینه پخش شدند و در ادامه مخلوط‌های حاصله به‌عنوان زمینه در ساخت کامپوزیت‌های تقویت‌شده با الیاف بازالت استفاده شد. به‌منظور بررسی اثر افزودن نانولوله‌های کربنی بر رفتار مکانیکی کامپوزیت‌ها آزمون‌های کشش و خمش سه‌نقطه‌ای روی آن‌ها صورت پذیرفت. همچنین برای بررسی مکانیزم شکست کامپوزیت‌ها از میکروسکوپ روبشی الکترونی گسیل میدانی (FESEM) استفاده شد. نتایج به‌دست آمده نشان داد که بیشترین میزان بهبود در خواص استحکام کششی، استحکام خمشی و همچنین جذب انرژی مربوط به نمونه حاوی 3/0 درصد وزنی نانولوله کربنی بود و از طرفی مدول کششی و خمشی نمونه‌ها با افزودن نانولوله‌ها روند افزایشی از خود نشان دادند. بررسی‌های میکروسکوپی موید این واقعیت بودند که افزودن نانولوله‌های کربنی چندجداره در زمینه باعث بهبود خواص فصل مشترکی بین الیاف بازالت و زمینه نانوکامپوزیتی شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An experimental study on mechanical properties of epoxy/basalt/carbon nanotube composites under tensile and flexural loadings

نویسندگان [English]

  • Hamed Khosravi 1
  • Reza Eslami-Farsani 2
  • Hossein Ebrahimnezhad-Khaljiri 3

1 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 -Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

3 Department of Materials Engineering, University of Sistan and Baluchestan, Zahedan, Iran

چکیده [English]

This work details an experimental investigation on understanding the effects of multi-walled carbon nanotubes (MWCNTs) on the tensile and flexural properties of basalt fiber (BF)/epoxy laminated composites. As a first step, the surface of MWCNTs was modified with a silane coupling agent namely 3-Glycidoxypropyltrimethoxysilane (3-GPTS). Fourier transform infrared (FT-IR) data confirmed the reaction mechanism between the silane compound and MWCNTs. 3-GPTS/MWCNTs with various loadings (0, 0.1, 0.3 and 0.5 wt.%) were added to the epoxy resin via mechanical and ultra-sonication routes. The resultant mixtures were then utilized to fabricate MWCNT/woven BF/epoxy nanocomposites using hand-layup technique. Mechanical properties of the composites were investigated under tensile and flexural loadings. Also, a field-emission scanning electron microscope (FESEM) was used to study the distribution level of MWCNTs in the matrix as well as the fracture surfaces of the specimens. The results revealed that at filler loading 0.3 wt.% of 3-GPTS/MWCNTs, maximum improvements in  tensile and flexural strengths and energy absorption of the BF/epoxy composites were obtained. Besides, the flexural and tensile moduli were enhanced continually by increasing the MWCNTs content. The microscopic investigations verified this subject that the addition of the 3-GPTS/MWCNTs to the matrix of BF/epoxy composite improves the BF-matrix interface yielding enhanced mechanical properties

کلیدواژه‌ها [English]

  • Polymer matrix composites؛ Basalt fibers؛ Multi-walled carbon nanotubes؛Surface modification
  • Tensile and flexural tests

 

[1]    Nerilli, F. Marino, M. and Vairo, G., “A Numerical Failure Analysis of Multi-Bolted Joints in FRP Laminates Based on Basalt Fibers,” Procedia Engineering, Vol. 109, pp. 492-506, 2015.

[2]    Khalili, S. M. R. Daghigh, V. and Farsani, R. E., “Mechanical Behavior of Basalt Fiber-Reinforced and Basalt Fiber Metal Laminate Composites Under Tensile and Bending Loads,” Journal of Reinforced Plastics and Composites, Vol. 30, No. 8, pp. 647-659, 2011.

[3]    Mostafa, N. H. Ismarrubie, Z. N. Sapuan, S. M. and Sultan, M. T. H., “Effect of Fabric Biaxial Prestress on the Fatigue of Woven E-Glass/Polyester Composites,” Materials and Design, Vol. 92, pp. 579-589, 2016.

[4]    Wang, X. Song, L. Pornwannchai, W. Hu, Y. and Kandola, B., “ The Effect of Graphene Presence in Flame Retarded Epoxy Resin Matrix on the Mechanical and Flammability Properties of Glass Fiber-Reinforced Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 53, pp.88-96, 2013.

[5]    Subagia, I. D. G. A. Tijing, L. D. Kim, Y. Kim, C. S. Vista IV, F. P. and Shon, H. K., “Mechanical Performance of Multiscale Basalt Fiber–Epoxy Laminates Containing Tourmaline Micro/Nano Particles,” Composites: Part B, Vol. 58, pp. 611-617, 2014.

[6]    Manikandan, V. Jappes, J. T. W. Kumar, S. M. S. and Amuthakkannan, P., “Investigation of the Effect of Surface Modifications on the Mechanical Properties of Basalt Fibre Reinforced Polymer Composites,” Composites Part B: Engineering, Vol. 43, No. 2, pp. 812-818, 2012.

[7]    Khosravi, H. and Eslami-Farsani, R., “An Experimental Investigation Into The Effect Of Surface-Modified Silica Nanoparticles On The Mechanical Behavior Of E-Glass/Epoxy Grid Composite Panels Under Transverse Loading”, In Persian, Journal of Science and Technology of Composites, 2015, First online published.

[8]    Khosravi, H. and Eslami-Farsani, R., “On The Mechanical Characterizations Of Unidirectional Basalt Fiber/Epoxy Laminated Composites With 3-Glycidoxypropyltrimethoxysilane Functionalized Multi-Walled Carbon Nanotubes-Enhanced Matrix,” Journal of Reinforced Plastics and Composites, 2015; Online published, DOI: 10.1177/0731684415619493.

[9]    Shokrieh, M. M. Saeedi, A. and Chitsazzadeh, M., “Evaluating the Effects of Multi-Walled Carbon Nanotubes on the Mechanical Properties of Chopped Strand Mat/Polyester Composites,” Materials & Design, Vol. 56, pp. 274-279, 2014.

[10]  Qiu, j. Zhang, C. Wang, B. and Liang, R., “Carbon Nanotube Integrated Multifunctional Multiscale Composites,” Nanotechnology, Vol. 18, No. 27, pp. 1-11, 2007.

[11]  Zainuddin, S. Fahim, A. Arifin, T. Hosur, M.V. Rahman, M.M. Tyson, J.D. and Jeelani, S., “Optimization of Mechanical and Thermo-Mechanical Properties of Epoxy and E-Glass/Epoxy Composites Using NH2-MWCNTs, Acetone Solvent and Combined Dispersion Methods,” Composite Structures, Vol. 110, pp. 39–50, 2014.

[12]  Wan Dalina, W.A.D. Mariatti, M. Ramlee, R. Mohd Ishak, Z. A. and Mohamed, A. R., “Comparison on the Properties of Glass Fiber/ MWCNT/ Epoxy and Carbon Fiber/ MWCNT/ Epoxy Composites,” Advanced Materials Research, Vol. 858, pp. 32-39, 2014.

[13]  Zhang, J. Jua, S. Jiang, D. and Peng, H. X., “Reducing Dispersity of Mechanical Properties of Carbon Fiber/Epoxy Composites by Introducing Multi-Walled Carbon Nanotubes,” Composites,Part B, Vol. 54, pp. 371–376, 2013.

[14]  Inam, F. Wong, D. W. Y. Kuwata, M. and Peijs, T., “Multiscale HybridMicro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers" Journal of Nanomaterials,” Vol. 2010, pp. 1-12, 2010.

[15]  Kim, M. T. and Rhee, K. Y., “Flexural Behavior of Carbon Nanotube-Modified Epoxy/Basalt Composites,” Carbon Letters, Vol. 12, No. 3, pp. 177-179, 2011.

[16]  Kim, M. T. Rhee, K. Y. Park, S. J. and Hui, D., “Effects of Silane-Modified Carbon Nanotubes on Flexural and Fracture Behaviors of Carbon Nanotube-Modified Epoxy/Basalt Composites,” Composites, Part B, Vol. 43, No. 5, pp. 2298–2302, 2012.

[17]  Standard Test Methods for Flexural Properties of Un-reinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standard, 08. 01, D 790 – 00, 2000.

[18]  Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Annual Book of ASTM Standard, 08. 01, D3039/D3039M-00, 2002.

[19]  Jen, Y. M. and Huang, C. Y., “Fatigue Characterization Of Acidtreated Carbon Nanotube/Epoxy Composites”, Journal of Composite Materials, Vol. 47, pp. 1665–1675, 2013.

[20]  Brancato, V. Visco, A. A. and Pistone, A., “Effect Of Functional Groups On Multi-Walled Carbon Nanotubes On The Mechanical, Thermal And Electrical Performance Of Epoxy Resin Based Nanocomposites”, Journal of Composite Materials, Vol. 47, pp. 3091–3103, 2013.

[21]  Tee, Y. B. Talib, R. A., and Abdan, K., “Thermally Grafting Aminosilane Onto Kenaf-Derived Cellulose And Its Influence On The Thermal Properties Of Poly (Lactic Acid) Composites”,. BioResources, Vol. 8, pp. 4468–4483, 2013.

[22]  Rahman, M. M. Zainuddin, S. Hosur, M. V. Malone, J. E. Salam, M. B. A. Kumar, A. and Jeelani, S., “Improvements in Mechanical and Thermo-Mechanical Properties of E-Glass/Epoxy Composites Using Amino Functionalized MWCNTs,” Composite Structures, Vol. 94, No. 8, pp. 2397–2406, 2012.

[23]  Brancato, V. Visco, A. M. and Pistone, A. “Effect Of Functional Groups Of Multi-Walled Carbon Nanotubes On The Mechanical, Thermal And Electrical Performance Of Epoxy Resin Based Nanocomposites”, Journal of Composite Materials, Vol. 47, pp.: 3091–3103, 2013..

[24]  Seshadri, M. and Saigal, S., “Crack Bridging in Polymer Nanocomposites,” Journal of Engineering Mechanics, Vol. 133, No. 8, pp. 911-918, 2007.

[25]  Eslami-Farsani, R. Khalili, S. M. R. Hedayatnasab, Z. and Soleimani, N., “Influence of Thermal Conditions on the Tensile Properties of Basalt Fiber Reinforced Polypropylene-Clay Nanocomposites”, Materials and Design, Vol. 53, pp. 540-549, 2014.