نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، داتنشکده مهندسی فضایی، پژوهشگاه هوافضا، تهران، ایران

2 استادیار، دانشکده مهندسی هوافضا، پژوهشگاه هوافضا، تهران، ایران

چکیده

در مقاله حاضر رفتار غیرخطی هندسی پوسته‌های استوانه‌ای و کروی ساخته شده از مواد مرکب چندلایه تحت بارگذاری جانبی با استفاده از روش اجزای محدود مورد تحلیل و بررسی قرار گرفته است. به‌دلیل وجود تغییر شکل‌های بزرگ، مسئله با حضور عبارت‌های کرنش غیرخطی در نظر گرفته شده است. خواص مواد چندلایه به‌صورت الاستیک خطی و غیر ایزوتروپ فرض شده است. روابط سازگاری در المان بر اساس فرمول‌بندی پوسته‌های کم‌عمق و بر اساس تئوری مرتبه اول برش عرضی توسعه داده شده است. برای تحلیل پوسته‌ها المان دوخطی (4 گره‌ای) با هزینه‌ی محاسباتی پایین معرفی شده و کلیه‌ی محاسبات المانی در دستگاه مختصات طبیعی المانی انجام گرفته است. شعاع انحنای هندسه مستقیماً در فرمولاسیون المانی قرار گرفته و اثرات انحنا در دو راستا در محاسبات مربوط به هر المان وارد می‌شود. با توجه به این‌که رفتار نوعی پوسته‌های دارای انحنا با تغییرشکل‌های بزرگ تحت بارگذاری جانبی نیاز به تحلیلی فراتر از نقطه‌ی حدی دارد، الگوریتم طول کمان توسعه داده شده است تا این مسئله و پدیده تبدیل مود قابل پیش‌بینی باشد. کد عددی تهیه شده در زبان برنامه‌نویسی متلب توانایی تحلیل هر نوع پوسته با هندسه فضایی را داراست. پس از صحت‌سنجی، تحلیل حساسیت رفتار غیرخطی پوسته‌های انحنادار نسبت به تغییر در آرایش لایه‌چینی و شرایط مرزی انجام گرفته است. نتایج نشان می‌دهد که المان توسعه داده شده با وجود درجات آزادی و هزینه محاسباتی کم، دقت مناسبی را ارائه می‌کند.

کلیدواژه‌ها

عنوان مقاله [English]

Geometrically nonlinear analysis of moderately thick curved composite panels under lateral load

نویسندگان [English]

  • Amir Sharbatdar 1
  • Jamshid Fazilati 2

1 Aerospace Research Institute (ARI), Tehran, Iran

2 Aerospace Research Institute (ARI), Tehran, Iran

چکیده [English]

In the present paper the geometrically nonlinear analysis of single and doubly curved shells is investigated using finite element method. The finite element formulation includes the nonlinear strain terms in order to take the large deformation effects in to account. The material behavior is assumed to be orthotropic linear elastic. The problem is formulated based on the shallow doubly curved shell theory using first order shear deformation theory of shells. A precise high performance 4-noded bilinear doubly curved element is presented. All FEM calculations carried out in the elemental natural coordinate system. The developed special element have the curvature effects along two main in-plane directions inside its formulation. The full equilibrium path of the geometrically nonlinear problem of shells has been extracted using the arc-length algorithm. Using arc-length algorithm, the method can follow the panel equilibrium path beyond the possible limit points and also is able to anticipate the snap-through phenomena. A MATLAB program code is developed. Some case studies are considered and the results are compared to available ones in the literature. The results show that in spite of its relatively low degrees of freedom, the developed formulation is capable to predict the equilibrium path of thin to moderately thick curved panels precisely.

کلیدواژه‌ها [English]

  • Geometrically nonlinear analysis
  • Moderately thick shell
  • Large deformation
  • Bilinear element
  • Arc length method
  • Laminated composite material

 

[1]   Dawe, D. J. and Wang, S., “Postbuckling analysis of thin rectangular laminated plates by spline FSM”, Thin-Walled structures, Vol. 30, pp. 159-79, 1998.

[2]    Hossain S. J. Sinha P. K. and Sheikh, A.H., “A finite element formulation for the analysis of laminated composite shells”, Computers & Structures, Vol. 82, pp. 1623-38, 2004.

[3]    Kundu C.K. and Sinha P.K., “Post buckling analysis of laminated composite shells”, Composite Structures, VOl. 78, pp. 316-324, 2007.

[4]    Ojeda, O. Prusty, B.G. Lawrence, N. and Thomas G., “A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners”, Finite Elements in Analysis and Design, Vol. 43, pp. 989-1002, 2007.

[5]    Reddy, J.N. Arciniega, R.A. and Moleiro F., “Finite element analysis of composite plates and shells”, Encyclopedia of Aerospace Engineering, 2010.

[6]    Ćetković, M. and Vuksanović Dj., “Geometrically nonlinear analysis of laminated composite plates using a layerwise displacement model”, Serbian Society for Computational Mechanics, vol 5, no 1, pp. 50-68, 2011.

[7]    Choudhary, S.S. and Tungikar V.B., “A simple finite element for nonlinear analysis of composite plates”, Engineering Science and Technology, Vol. 3, No. 6, 2011.

[8]    Kakani, G.S. and Prasanthi P.P., “Prediction of nonlinear behavior of thin skew plates with cut-out using finite element analysis”, Engineering Research & Technology, Vol. 1, 2012.

[9]    Saad, A.S., “Elasticity: theory and applications”, Ross Publishing, 2009.

[10]  Zienkiewicz, O.C. and Taylor R.L., “The finite element method”, Vol. 1-2, 2000.

[11]  Riks E., “An incremental approach to the solution of snapping and buckling problems”, International Journal of Solids and Structures, Vol. 15, No. 7, pp. 529-51, 1979.

[12]  Crisfield, M.A. “A fast incremental/iterative solution procedure that handles snap-through”, Computers & Structures, Vol. 13, No. 1, pp. 55-62, 1981.

[13]  Memon, B.A. and Su, X., “Arc-length technique for nonlinear finite element analysis", Journal of Zhejiang University Science, Vol. 5, No. 5, pp. 618-28, 2004.

[14]  Calo, E., “Arc-length strategies in structural equilibrium path-following”, MS Thesis, universita’ degli studi di pavia, facolta’ di ingegneria, 2006.

[15]  Forde, B.W.R. and Stiemer, S.F., “Improved arc length orthogonality methods for nonlinear finite element analysis”, Computers & Structures, Vol. 27, No. 5, pp. 625-30, 1987.

[16]  Pica, A. Wood, R.D. and Hinton, E., “Finite element analysis of geometrically nonlinear plate behavior using a mindlin formulation”, Computers & Structures, Vol. 11, No. 3, pp. 203-215, 1980.

[17]  Alinia, M.M. and Ghannadpour S.A.M., “Large deflection behavior of functionally ‎graded plates ‎under pressure loads”, J. Composite Structures, Vol. 75, pp. 67-71, 2006‎.‎

 [18] Woo. J. and Meguid. S.A., “Nonlinear analysis of functionally graded plates and shells”, Int. journal of solids and structures, Vol. 38, pp. 7409-21, 2001.‎

[19]  Sabir, A.B. and Djoudi M.S., “Shallow shell finite element for the large deflection geometrically nonlinear analysis of shells and plates”, Thin-walled structures, vol 21, No. 3, pp. 253-67, 1995.

[20]  Kim K. and Voyiadjis G.Z., “Nonlinear finite element analysis of composite panels”, Composites Part B, Vol. 30, pp. 365–8, 1999

[21]  Jones, R.M., “Buckling of Bars, Plates and Shells”, Blacksburg, Virginia United States of America, Bull Ridge, 2006.