Document Type : Research Paper

Authors

1 Mechanical Engineering Department, University of Bonab, Bonab, Iran.

2 Mechanical Engineering Department, Maragheh Faculty, Technical and Vocational University, Tehran, Iran.

10.22068/jstc.2019.100091.1502

Abstract

In this paper, the low velocity impact of woven carbon-fiber-epoxy composites have been investigated experimentally using a number of impact tests. The woven laminates are twill and made by vacuum infusion technique (VARIM). The low velocity impact tests were carried out with different impact energies of 20, 30, 50, 60 and 80 J to find the penetration and perforation threshold energies using profile energy method. Then the impact behavior of the samples was studied using drawn diagrams of contact force-deflection, contact force-time, deflection-time, and energy-time to investigate the effect of the energy of impact and its' variations on the maximum contact force, absorbed energy and deflection in the woven Carbon-Fiber-Epoxy Composites. The results show that the contact force, absorbed energy and deflection increases when the applied impact energy increases up to 60 J. It is worth mentioning that the observed enhancement trends of the contact force, absorbed energy and deflection are different from each other.

Keywords

Main Subjects

[1]   [zigany, T., “Special Manufacturing and Characteristics of Basalt Fiber Reinforced Hybrid Polypropylene Composites: Mechanical Properties and Acoustic Emission Study" Composites Science and Technology, Vol. 66, No. 16, pp. 3210-3220, Dec, 2006.
[2]   [ahmoud, B., Manseri, L., Rogani, A., Navarro, P., Marguet, S., Ferrero, J. F. and  Tawk, I., “Experimental and Numerical Study of the Damage Mechanisms in Hybrid Unidirectional/Woven Composites under Impact Loading" Composite Structures, Vol. 209, pp. 606-615, 2019.
[3]               Han, S. H., Oh, H. J., Lee, H. C. and  Kim, S. S., "The Effect of Post-Processing of Carbon Fibers on the Mechanical Properties of Epoxy-Based Composites" Composites Part B-Engineering, Vol. 45, No. 1, pp. 172-177, 2013.
[4]   de Vasconcellos, D. S., Sarasini, F., Touchard, F., Chocinski-Arnault, L., Pucci, M., Santulli, C., Tirillò, J., Iannace, S. and  Sorrentino, L., “Influence of Low Velocity Impact on Fatigue Behaviour of Woven Hemp Fibre Reinforced Epoxy Composites“ Composites Part B: Engineering, Vol. 66, pp. 46-57, 2014.
[5]               Rahman, M. M., Hosur, M., Hsiao, K.-T., Wallace, L. and  Jeelani, S., “Low Velocity Impact Properties of Carbon Nanofibers Integrated Carbon Fiber/Epoxy Hybrid Composites Manufactured by Ooa–Vbo Process“ Composite Structures, Vol. 120, pp. 32–40, 2015.
[6]               Farahat, H. and Brooghani, S. Y. A., “Studying the Behavior of A356/Sicp Composite Foam under Low-Velocity Impact Loading“ Journal of Solid and Fluid Mechanics, Vol. 7, No. 2, pp.129-147, 2017.
[7]              Sarasini, F., Tirillo, J., Ferrante, L., Valente, M., Valente, T., Lampani, L., Gaudenzi, P., Cioffi, S., Iannace, S. and  Sorrentino, L., “Drop-Weight Impact Behaviour of Woven Hybrid Basalt-Carbon/Epoxy Composites“ Composites Part B-Engineering, Vol. 59, pp. 204-220, 2014.
[8]               Ghajar, R. and  Sohi, A. R., “Effect of Impactor Shape and Temperature on the Behavior of E-Glass/Epoxy Composite Laminates“ Modares Mechanical Engineering, Vol. 14, No. 10, pp. 1-8, 2014 (In Persian).
[9]               Eslami-Farsani, R. and  Shahrabi-Farahani, A., “Investigation on the High-Velocity Impact Resistance in Grid Composite Plates Containing Carbon Nanotubes“ Tabriz journal of mechanical engineering, Vol. 48, No. 1, pp. 19-26, 2018 (In Persian).
[10]             Hosur, M. V. and  Abdullah, M., “Studies on the Low-Velocity Impact  Response of Woven Hybrid Composites“ Composite Structures, Vol. 67, No. 3, pp. 253–262, 2005.
[11]             Khasrag, E. K., Siadati, H. and  Eslami-Farsani, R., “Effect of Surface Modification of Graphene Nanoplatelets on the High Velocity Impact Behavior of Basalt Fibers Reinforced Polymer-Based Composites“ J Journal of Science and Technology of Composites, Vol. 5, No. 1, pp. 109-116, 2018 (In Persian).
[12]             Icten, B. M., Atas, C., Aktas, M. and  Karakuzu, R., “Low Temperature Effect on Impact Response of Quasi-Isotropic Glass/Epoxy Laminated Plates“ Composite Structures, Vol. 91, pp. 318–323, 2009.
[13]             Ghasemi, F. A., Ghasemi, I. and  Daneshpayeh, S., “A Study on Effect of Titanium Dioxide Nanoparticles on the Elastic Modulus, Impact and Tensile Strengths of Polypropylene/Linear Low Density Polyethylene (Pp/Lldpe) Blends“ J Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 386-390, 2018 (In Persian).
[14] [Bigdilou, M. B., Eslami-Farsani, R. and  Ebrahimnezhad-Khaljiri, H., “The Effect of Carbon Nanotubes on High Velocity Impact Behavior of Hybrid Kevlar- Ultrahigh Molecular Weight Polyethylene Fibers Composite with Interlayer Configuration“ J Journal of Science and Technology of Composites, pp. -, 2018 (In Persian).
[15]             Dizaji, R. A. and M.Yazdani, “Low Velocity Impact Response of Carall Composites Reinforced with Nano Particles“ Modares Mechanical Engineering, Vol. 17, No. 2, pp. 58-64, 2017 (In Persian).
[16] [           Khosravi, H., Eslami-Farsani, R. and  Ebrahimnezhad-Khaljiri, H., “An Experimental Study on Mechanical Properties of Epoxy/Basalt/Carbon Nanotube Composites under Tensile and Flexural Loadings“ J Journal of Science and Technology of Composites, Vol. 3, No. 2, pp. 187-194, 2016 (In Persian).
[17]             Korsavi-Kashani, S. A., “Exprimental Investigation on Effect of Functionalized Nano Silica and Nano Graphene on Basalt Fibers-Epoxy Composite under High Velocity Impact“ J Journal of Science and Technology of Composites, pp. -, 2019 (In Persian).
[18]             Nouri-Niyaraki, M., Ashenai Ghasemi, F., Ghasemi, I. and  Daneshpayeh, S., "Experimental Analysis of Graphene Nanoparticles and Glass Fibers Effect on Mechanical and Thermal Properties of Polypropylene/Epdm Based Nanocomposites" Journal of Science and Technology of Composites“, Vol. 5, No. 2, pp. 169-176, 2018. (In Persian)
[19]             ASTM, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, , ASTM International, .
[20]             Sayer, M., Bektaş, N. B. and  Sayman, O., “An Experimental Investigation on the Impact Behavior of Hybrid Composite Plates" Composite Structures, Vol. 92, No. 5, pp. 1256–1262, 2010.
[21]             Atas, C. and  Sayman, O., “An Overall View on Impact Response of Woven Fabric Composite Plates" Composite Structures, Vol. 82, No. 3, pp. 336–345, 2008.
[22]             Aktaş, M., Atas, C., İçten, B. M. and  Karakuzu, R., "An Experimental Investigation of the Impact Response of Composite Laminates" Composite Structures, Vol. 87, No. 4, pp. 307–313, 2009.
[23] ideon, R. K., Hu, H., Wambua, P. and  Gu, B., “Characterizations of Basalt Unsaturated Polyester Laminates under Static Three-Point Bending and Low-Velocity Impact Loadings“ Polymer Composites, Vol. 35, No. 11, pp. 2203–2213, 2014.
[24] Sayer, M., Bektas, N. B. and  Sayman, O., “An Experimental Investigation on the Impact Behavior of Hybrid Composite Plates“ Composite Structures, Vol. 92, No. 5, pp. 1256-1262, Apr, 2010.
[25] Sarasini, F., Tirillo, J., Valente, M., Ferrante, L., Cioffi, S., Iannace, S. and  Sorrentino, L., “Hybrid Composites Based on Aramid and Basalt Woven Fabrics: Impact Damage Modes and Residual Flexural Properties“ Materials & Design, Vol. 49, pp. 290-302, Aug, 2013.
[26]             Richardson, M. O. W. and  Wisheart, M. J., “Review of Low-Velocity Impact Properties of Composite Materials“ Composites Part A: Applied Science and Manufacturing, Vol. 27, No. 12, pp. 1123–1131, 1996.