نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مواد، دانشگاه خواجه‌نصیرالدین طوسی، تهران، ایران

2 استاد، مهندسی مواد، دانشگاه علم و صنعت ایران، تهران، ایران

10.22068/jstc.2018.84872.1436

چکیده

در این تحقیق، آزمون جذب آب بر روی کامپوزیت پلیمری تقویت‌شده با الیاف شیشه تک جهتِ (GFRP) به‌منظور به‌کارگیری در عایق‌های کامپوزیتی ولتاژ بالا انجام شد. نمونه‌های کامپوزیتی در دمای اتاق در آب مقطر، به‌صورت غوطه‌وری قرار گرفتند و مقاومت شان به جذب رطوبت برحسب نرخ جذب رطوبت، میزان جذب رطوبت و ضریب نفوذ ظاهری تعیین شد. همچنین اثر هندسه نمونه (اثر لبه) بر روی جذب رطوبت کامپوزیت موردبررسی قرار گرفت. بر طبق نتایج می‌توان پی برد که تغییرات در میزان رطوبت اثر ویژه‌ای بر روی خواص مکانیکی و الکتریکی مواد کامپوزیتی خواهد داشت. آزمون کشش به‌منظور تعیین خواص مکانیکی، اندازه‌گیری ولتاژ شکست و جریان نشتی به‌منظور بررسی خواص الکتریکی و تصویربرداری به کمک میکروسکوپ الکترونی عبوری برای مشاهده مورفولوژی نمونه‌های GFRP صورت گرفت. با افزایش زمان غوطه‌وری استحکام کششی و مدول یانگ نمونه‌ها کاهش یافت. بعلاوه، آب جذب‌شده به‌وسیله نمونه‌های کامپوزیتی منجر به افت ولتاژ شکست و افزایش جریان نشتی کامپوزیت شد که می‌تواند نشان‌دهنده‌ی تخریب آن‌ها باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the water absorption content effect on the dielectric properties and tensile strength of polymer composites

نویسندگان [English]

  • mohammad amini 1
  • alireza khavandi 2

1 Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran, Iran

2 -School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

Water absorption tests were performed on unidirectional glass/polymer composite materials used in high voltage composite (nonceramic) insulators. The composites were based on E-glass fibers with polyester resin. The composites were exposed to distilled water at room temperature and their resistance to moisture absorption in terms of the rate of moisture absorption, maximum moisture content and apparent diffusivity was determined. In particular, the effects of specimen geometry (the edge effect) on moisture absorption by the composites were evaluated. It was found that changes in moisture content have a special effect on the mechanical and electrical properties of the composite material. The tensile test was conducted to determine the mechanical properties, breakdown voltage and the leakage current were measured to determine the electrical properties and scanning electron microscopy was used to observe the morphological property of Glass Fiber Reinforced Polymer (GFRP) samples. A reduction in both module and tensile strength was observed with water aging. Furthermore, Water absorbed by composite samples had a detrimental influence on the breakdown voltage and leakage current of composite specimens that could be an indicator of degradation.

کلیدواژه‌ها [English]

  • Polymer composite؛ Water absorption؛ Breakdown voltage؛ Leakage current؛ Tensile strength
  • Microstructural characterization

 

 [1] Ray, B. C. and Rathore, D., “Environmental damage and degradation of FRP composites: A review report,” Polymer Composites, Vol. 36, No. 3, pp. 410-423, 2015.

[2] Akay, E. Yilmaz, C. Kocaman, E. S. Turkmen, H. S. and Yildiz, M., “Monitoring Poisson’s ratio degradation of FRP composites under fatigue loading using biaxially embedded FBG sensors,” Materials, Vol. 9, No. 9, pp. 781. 2016.

[3] Ahmadi-Joneidi, I. Shayegani-Akmal, A. A. and Mohseni, H., “Leakage current analysis of polymeric insulators under uniform and non-uniform pollution conditions,”. IET Generation, Transmission & Distribution, Vol. 11, No. 11, pp. 2947-2957, 2017.

[4] Nekahi, A. McMeekin, S. G. and Farzaneh, M., “Effect of pollution severity on electric field distribution along a polymeric insulator,” IEEE 11th International Conference, pp. 612-615, 2015.

[5] Armentrout, D. Kumosa, M. and Kumosa, L., “Water diffusion into and electrical testing of composite insulator GRP rods,” IEEE transactions on dielectrics and electrical insulation, Vol. 11, No. 3, pp. 506-522, 2004.

[6] Ellyin, F. and Maser, R., “Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens,” Composites Science and Technology, Vol. 64, No. 12, pp. 1863-1874, 2004.

[7] Jiang, X. Kolstein, H. Bijlaard, F. and Qiang, X., “Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: moisture diffusion characteristics,” Composites Part A: Applied Science and Manufacturing, Vol. 57, pp. 49-58, 2014.

[8] Eslami, S. Honarbakhsh-Raouf, A. and Eslami, S., “Effects of moisture absorption on degradation of E-glass fiber reinforced Vinyl Ester composite pipes and modelling of transient moisture diffusion using finite element analysis,” Corrosion Science, Vol. 90, pp. 168-175, 2015.

[9] Solis-Ramos, E. and Kumosa, M., “Synergistic effects in stress corrosion cracking of glass reinforced polymer composites”. Polymer Degradation and Stability, Vol. 136, pp. 146-157, 2017.

[10] Świt, G. and Adamczak, A., “Stress corrosion of epoxy-glass composites monitored using acoustic emission,” Technical Transactions, Vol. 3, 2017.

[11] Tanks, J. D. Arao, Y. and Kubouchi, M., “Diffusion kinetics, swelling, and degradation of corrosion-resistant C-glass/epoxy woven composites in harsh environments,” Composite Structures, 2018.

[12] Jones, F. R., “Durability of reinforced plastics in liquid environments,” Reinforced plastics durability, pp. 70-110, 1999.

[13] Armentrout, D. Kumosa, M. & Kumosa, L., “The behavior of composite insulator rods subjected to the water diffusion electrical test,” IEEE Trans Dielectr Electr Insulat., 2004.

[14] Kumosa, L. Armentrout, D. Benedikt, B. & Kumosa, M., “An investigation of moisture and leakage currents in GRP composite hollow cylinders,” IEEE transactions on dielectrics and electrical insulation, Vol. 12, No. 5, pp. 1043-1059, 2005.

 [15] Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials, ASTM International, West Conshohocken, PA., D. 5229/D 5229M-92. 1998.

[16] Shen, C. H. and Springer, G. S., “Moisture absorption and desorption of composite materials,” Journal of composite materials, Vol. 10, No. 1, pp. 2-20, 1976.

[17] Standard test method for Composite Insulators for AC overhead lines with a nominal voltage greater than, 1000, Standard, I. E. C. 61109, 1992.

[18] Standard test method for Composite Suspension Insuitors for Overhead Transmission Lines-Tests. Lines, Standard, A. N. S. I. C29. 11, 1989.

[19] Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, ASTM Standard, D3039/D 3039M-08, 2008.

[20] Espert, A. Vilaplana, F. and Karlsson, S., “Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties,” Composites Part A: Applied science and manufacturing, Vol. 35, No. 11, pp. 1267-1276, 2004.

[21] Dhakal, H. N. Zhang, Z. Y. and Richardson, M. O. W., “Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites,” Composites science and technology, Vol. 67, No. 7-8, pp. 1674-1683, 2007.

[22] Haddar, N. Ksouri, I. Kallel, T. and Mnif, N., “Effect of hygrothermal ageing on the monotonic and cyclic loading of glass fiber reinforced polyamide,” Polymer Composites, Vol. 35, No. 3, pp. 501-508, 2014.

[23] Jefferson, G. D. Farah, B. Hempowicz, M. L. and Hsiao, K. T., “Influence of hygrothermal aging on carbon nanofiber enhanced polyester material systems,” Composites Part B: Engineering, Vol. 78, pp. 319-323, 2015.

[24] Jiang, X. Kolstein, H. and Bijlaard, F. S., “Moisture diffusion in glass–fiber-reinforced polymer composite bridge under hot/wet environment,” Composites Part B: Engineering, Vol. 45, No. 1, pp. 407-416, 2013.

[25] Guermazi, N. Tarjem, A. B. Ksouri, I. and Ayedi, H. F., “On the durability of FRP composites for aircraft structures in hygrothermal conditioning,” Composites Part B: Engineering, Vol. 85, pp. 294-304, 2016.

[26] Huang, G. and Sun, H, “Effect of water absorption on the mechanical properties of glass/polyester composites” Materials & design, Vol. 28, No. 5, pp. 1647-1650, 2007.

[27] Visco, A. M. Campo, N. and Cianciafara, P., “Comparison of seawater absorption properties of thermoset resins based composites,” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 2, pp. 123-130, 2011.

[28] Kootsookos, A. and Mouritz, A. P., “Seawater durability of glass-and carbon-polymer composites,” Composites Science and Technology, Vol. 64, No. 10-11, pp. 1503-1511, 2004.

[29] Mahmoud, M. K. and Tantawi, S. H., “Effect of strong acids on mechanical properties of glass/polyester GRP pipe at normal and high temperatures,” Polymer-Plastics Technology and Engineering, Vol. 42, No. 4, pp. 677-688, 2003.

[30] Kumosa, L. Benedikt, B. Armentrout, D. and Kumosa, M. Moisture absorption properties of unidirectional glass/polymer composites used in composite (non-ceramic) insulators. Composites Part A: Applied Science and Manufacturing, Vol. 35, No. 9, pp.1049-1063, 2004.

[31] Liang, X. and Dai, J. Analysis of the acid sources of a field brittle fractured composite insulator. IEEE transactions on dielectrics and electrical insulation, Vol. 13, No. 4, pp. 870-876, 2006.

[32] McAllister, I. W. and Crichton, G. C., “Influence of bulk dielectric polarization upon partial discharge transients effect of heterogeneous dielectric geometry,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, No. 1, pp. 124-132, 2000.

[33] Armentrout, D. Kumosa, M. and Kumosa, L. Water diffusion into and electrical testing of composite insulator GRP rods. IEEE transactions on dielectrics and electrical insulation, Vol. 11, No. 3, pp. 506-522, 2004.

[34] Stamenović, M. Putić, S. Rakin, M. Medjo, B. and Čikara, D., “Effect of alkaline and acidic solutions on the tensile properties of glass–polyester pipes,” Materials & Design, Vol. 32, No. 4, pp. 2456-2461, 2011.

[35] Kalligudd, S. K., “Characterization and durability evaluation of recycled FRP composites and sandwich specimens,” West Virginia University, 2010.