نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد‌یار، مهندسی پلیمر، دانشگاه بناب، بناب، ایران

2 استادیار ، مهندسی پلیمر، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

3 استاد ، مهندسی پلیمر، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

10.22068/jstc.2018.87021.1447

چکیده

در این پژوهش، هیبرید نانوذرات رس اصلاح شده و نانوپرلیت سیلانه شده از طریق ترکیب ذوب مستقیم به پلی اتیلن با دانسیته پایین اضافه شد. نحوه پخش ذرات اضافه شده توسط میکروسکوپ الکترونی روبشی مورد بررسی قرار گرفت. نتایج نشان میدهد که با افزودن میزان نانوپرکننده هیبریدی نانوپرلیت/نانورس سطح شکست نمونه ها زبرتر شده و شدت فرورفتگیها و برآمدگیها تشدید میشود. اثر نانوذرات هیبریدی بر روی خواص گرمایی پلی اتیلن مثل دمای ذوب و دمای بلورینگی بوسیله آزمون گرماسنجی روبشی تفاضلی مورد مطالعه قرار گرفت. با افزایش میزان نانوپرکننده هیبریدی نانوپرلیت/نانورس دمای ذوب و دمای بلورینگی نمونه های پلی اتیلن بالاتر میرود این موضوع به برهمکنش بین ذرات نانو هیبریدی و زنجیرهای پلیمری مربوط است. خواص مکانیکی تنش-کرنش نمونه های نانوکامپوزیت هیبریدی پلی اتیلن تحت تست کششی تک جهته مورد بررسی قرار گرفت. نتایج تجربی نشان میدهد که مدول یانگ و استحکام کششی کامپوزیت ها میتوانند با مقدار کمی نانوپرکننده بهبود یابند. علاوه بر این، برای بررسی رفتار تنش-کرنش نانوکامپوزیت هیبریدی پلی اتیلن، مدلهای ابرکشسان مانند آرودا-بویس، مونی-ریولین، چندجمله ای، یه-اوه، واندروالس و اگدن مورد مطالعه قرار گرفتند و با داده های تجربی مقایسه شدند . نتایج نشان داد که مدلهای آرودا-بویس، واندروالس، یه-اوه و مونی-ریولین به دلیل نداشتن ناوردای دوم تانسور، در تمامی مقادیر نانوپرکننده هیبریدی انحراف بیشتری از داده های تجربی از خود نشان میدهد در حالیکه مدلهای دیگر من جمله چندجمله‌ای مرتبه دوم و اگدن بعلت وجود مولفه ناوردای مرتیه بالاتر مکانیک پیوسته، نتایج مطلوبی برای نمونه های نانوکامپوزیتی پلی اتیلن/ نانوذرات رس/ نانوپرلیت به همراه داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Mechanical behavior of nanoperlite/nanoclay hybrid nanocomposites based on polyethylene: Experimental and numerical validation of hyperelastic models

نویسندگان [English]

  • Elnaz Esmizadeh 1
  • Razi Sahraeian 2
  • Ghasem Naderi 3
  • Masoud Esfandeh 3

1 Department of Polymer Science and Engineering, University of Bonab, Bonab, Iran

2 Faculty of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran

3 Faculty of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran

چکیده [English]

This contribution concerns preparation and characterization of low-density polyethylene (LDPE) melt-mixed blends in the presence of organically-modified montmorillonite nanoclays and silane-modified nano perlite. Dispersion state of hybrid nanofillers was observed by scanning electron microscopy (SEM) technique. A significant increase in average roughness of fracture surface of polyethylene with addition of hybrid nanofillers and intensive ridges and valleys are observed in the samples. Crystallization and melting characteristics of LDPE nanocomposites reinforced by hybrid nanoclay/nanoperlite were studied by differential scanning calorimetry (DSC) in isothermal mode. Hybrid nanofiller incorporation increased crystallization and melting temperature which can be related to high interaction between polymeric chains and hybrid nanofillers. The results of mechanical investigation revealed that Young’s modulus and tensile strength of LDPE are improved with introduction of hybrid nanofiller. Six constitutive models, Yeoh, Arruda-Boyce, Mooney-Rivilen, polynomial, Van der Waals, and Odgen were applied to investigate the stress-strain behavior of LDPE/nano clay/nano perlite nanocomposites. It was concluded that the ability of these models to predict the true behavior of the nanocomposite samples directly depends on the amount of hybrid nanofiller. Results showed that Arruda-Boyce, Vander-Waals, Yeoh and Mooney-Rivlin models show more deviation from experimental data in all nanohybrid filler content, whereas the others, Ogden, polynomial (2), can be used for all samples.

کلیدواژه‌ها [English]

  • Hybrid nanocomposite
  • nanoperlite
  • Nanoclay
  • Hyperelastic
  • mechanical behavior

[1]     Golparvar, M. and Fasihi, M., "Investigation of mechanical properties of polypropylene-based hybrid nanocomposites using experimental design". In Persian, Journal of Science and Technology of Composites, In press. 2018.

[2]     Esmaili, P., Azdast, T., Doniavi, A., Hasanzadeh, R., Mamaghan, S., and Lee, R.E., "Experimental investigation of mechanical properties of injected polymeric nanocomposites containing multi-walled carbon nanotubes according to design of experiments". In Persian, Journal of Science and Technology of Composites, Vol  2, No 3: pp. 67-74. 2015.

[3]     Avazverdi, E., Vandalvand, M., and Shakeri, A., "The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites". In Persian, Iranian Journal of Polymer Science and Technology, Vol  27, No 6: pp. 389-381. 2015.

[4]     Habibi, S. and Elhami, M., "A Study on morphology of Poly(vinyl alcohol)- organoclay nanocomposite nanofibers". In Persian, Journal of Science and Technology of Composites, In press. 2018.

[5]     Sahraeian, R., Esmizadeh, E., Esfandeh, M., Naderi, G., and Dubios, C., "Hybrid Effect of Nanoperlite and Nanoclay on Mechanical and Rheological Properties of Low-Density Polyethylene". Journal of Polymer & Composites, Vol  6, No 1. 2018.

[6]     Sahraeian, R., Hashemi, S.A., Esfandeh, M., and Ghasemi, I., "Preparation of nanocomposites based on LDPE/Perlite: mechanical and morphological studies". Polymers & Polymer Composites, Vol  20, No 7: pp. 639. 2012.

[7]     Irani, A.E.S., "Multiscale modeling of fracture in polymer nanocomposite reinforced by intact and functionalized CNTs". In Persian, Journal of Science and Technology of Composites, Vol  4, No 1: pp. 35-46. 2017.

[8]     Sahebian, S., Zebarjad, S.M., and Sajjadi, S.A., "The Effect of Temperature and Nano-sized Calcium Carbonate on Tensile Properties of Medium Density Polyethylene". In Persian, Iranian Journal of Polymer Science and Technology, Vol  21, No 2: pp. 133-140. 2008.

[9]     Rashmi, D., Tambe, S.P., Singh, S.K., Raja, V.S., and Kumar, D., "Thermally sprayable grafted LDPE/nanoclay composite coating for corrosion protection". Surface and Coatings Technology, Vol  205, No 23-24: pp. 5470-5477. 2011.

[10]   Esmizadeh, E., Naderi, G., Ghoreishy, M.H.R., and Bakhshandeh, G.R., "Effect of Mixing Conditions on Mechanical and Physical Properties of Nanocomposites Based on NBR/PVC/Nanoclay". In Persian, Iranian Journal of Polymer Science and Technology, Vol  23, No 4: pp. 293-304. 2010.

[11]   Karimpoor, M.H., "Applied Environmental Geology". Javid Publications  of Iran, Vol, No: pp. 404. 1988.

[12]   Sahraeian, R. and Esfandeh, M., "Mechanical and morphological properties of LDPE/perlite nanocomposite films". Polymer Bulletin, Vol  74, No 4: pp. 1327-1341. 2017.

[13]   Sahraeian, R., Esfandeh, M., and Hashemi, S.A., "Rheological, Thermal and Dynamic Mechanical Studies of the LDPE/Perlite Nanocomposites". Polymers & Polymer Composites, Vol  21, No 4: pp. 243. 2013.

[14]   Esmizadeh, E., Naderi, G., Yousefi, A.A., and Milone, C., "Thermal and Morphological Study of Epoxy Matrix with Chemical and Physical Hybrid of Nanoclay/Carbon Nanotube". JOM, Vol  68, No 1: pp. 362-373. 2016.

[15]   Esmizadeh, E., Naderi, G., and Paran, S.M.R., "Preparation and characterization of hybrid nanocomposites based on NBR/Nanoclay/Carbon black". Polymer Composites, Vol  38, No S1: pp. E181-E188. 2017.

[16]   Hotta, S. and Paul, D.R., "Nanocomposites formed from linear low density polyethylene and organoclays". Polymer, Vol  45, No 22: pp. 7639-7654. 2004.

[17]   Ghoreishy, M.H.R., "Simulating Mechanical Behavior of a Tread Rubber Compound by a Hyperelastic/Hysteresis Model". In Persian, Iranian Journal of Polymer Science and Technology, Vol  24, No 5: pp. 369-377. 2013.

[18]   Rafei, M.H.R.G.G.N.M., "A Theoretical and Experimental Investigation of Mechanical Behavior of Steel-Rubber Long Fiber Composites Using Finite Element Method and Analytical Models". In Persian, Iranian Journal of Polymer Science and Technology, Vol  29, No 2: pp. 139-155. 2016.

[19]   Ghasemi, I., Karrabi, M., and Ghorieshy, M.H.R., "Investigation into stress-strain behaviour of organoclay SBR composite using different constitutive models". Plastics, rubber and composites, Vol  37, No 7: pp. 305-310. 2008.

[20]   Austrell, P.E. and Kari, L. A Constitutive Model for the fatigue life prediction of rubber. in Constitutive Models for Rubber IV: Proceedings of the Fourth European Conference on Constitutive Models for Rubber, ECCMR 2005, Stockholm, Sweden, 27-29 June 2005. 2005. Taylor & Francis.

[21]   Dorfmann, A. and Muhr, A. Material law selection in the finite element simulation of rubber-like materials and its practical application in the industerial design process. in Constitutive Models for Rubber: Proceedings of the First European Conference on Constitutive Models for Rubber, Vienna, Austria, 9-10 September 1999. 1999. Balkema.

[22]   Ali, A., Hosseini, M., and Sahari, B.B., "A review and comparison on some rubber elasticity models". Journal of Scientific & Industrial Research, Vol  69, No 7: pp. 495-500. 2010.

[23]   Duncan, B.C., Crocker, L.E., and Urquhart, J.M., Evaluation of hyperelastic Finite Element models for flexible adhesive joints. 2000: National Physical Laboratory.

[24]   Korochkina, T.V., Claypole, T.C., and Gethin, D.T. Choosing constitutive models for elastomers used in printing processes. in Constitutive Models for Rubber IV: Proceedings of the Fourth European Conference on Constitutive Models for Rubber, ECCMR 2005, Stockholm, Sweden, 27-29 June 2005

[25]   Ghosh, P., Saha, A., and Mukhopadhyay, R. Prediction of tyre rolling resistance using FEA. in Constitutive Models for Rubber III: Proceedings of the Third European Conference on Constitutive Models for Rubber, London, UK, 15-17 September 2003. 2003. Balkema.

[26]   Peng-Cheng, M., Ming-Yang, L., Hao, Z., Sheng-Qi, W., Rui, W., Kai, W., Yiu-Kei, W., Ben-Zhong, T., Soon-Hyung, H., and Kyung-Wook, P., "Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black". ACS applied materials & interfaces, Vol  1, No 5: pp. 1090-1096. 2009.

[27]   Esmizadeh, E., Naderi, G., and Barmar, M., "Effect of organo-clay on properties and mechanical behavior of Fluorosilicone rubber". Fibers and Polymers, Vol  15, No 11: pp. 2376-2385. 2014.

[28]   Khonakdar, M.M.-T.S.H.J.H.A., "A Comparative Study on the Influence of Nanoalumina and Carbon Nanotubes on Thermal Stability, Adhesion Strength and Morphology of Epoxy Adhesives". In Persian, Iranian Journal of Polymer Science and Technology, Vol  27, No 6: pp. 369-361. 2015.

[29]   Jafari, S.H., Kalati-Vahid, A., Khonakdar, H.A., Asadinezhad, A., Wagenknecht, U., and Jehnichen, D., "Crystallization and melting behavior of nanoclay-containing polypropylene/poly (trimethylene terephthalate) blends". eXPRESS Polymer Letters, Vol  6, No 2. 2012.

[30]   Vahidifar, A., Khorasani, S., Park, C.B., Khonakdar, H.A., Reuter, U., Naguib, H.E., and Esmizadeh, E., "Towards the development of uniform closed cell nanocomposite foams using natural rubber containing pristine and organo-modified nanoclays". RSC Advances, Vol  6, No 59: pp. 53981-53990. 2016.

[31]   Esmizadeh, E., Naderi, G., Ghoreishy, M.H.R., and Bakhshandeh, G.R., "Chemical and physical properties of self-crosslinked poly (vinyl chloride)/nitrile rubber nanocomposites prepared by melt-mixing process". Journal of Polymer Engineering, Vol  31, No 2-3: pp. 83-92. 2011.

[32]   Hashemi, S.A., Arabi, H., Ahmadi, S., Sahraeian, R., and Khatibi, M.A., "The influence of dimethyl hydrogen siloxane on polypropylene-straw fibres interface". Vol, No. 2006.

[33]   Boyce, M.C. and Arruda, E.M., "Constitutive models of rubber elasticity: a review". Rubber chemistry and technology, Vol  73, No 3: pp. 504-523. 2000.