نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مواد و متالورژی، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.

2 استاد، مهندسی مواد و متالورژی ، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.

10.22068/jstc.2020.112782.1581

چکیده

در این تحقیق، سنتز نانوکامپوزیت مزوپروس سیلیکا‏/ اکسیدآهن (MCM-41/γ-Fe2O3) با روش هیدروترمال انجام شده و سپس کاربرد این نانوکامپوزیت به عنوان جاذب در حذف یون‏های نیکل، کادمیوم، کروم، سرب و روی از محلول آبی بررسی شده است. همچنین، تاثیر pH محلول، زمان تماس و دوز جاذب بر درصد حذف مورد مطالعه قرار گرفته است. نتایج نشان می‏دهد که جذب این یون‏ها بر سطح جاذب، با افزایش pH محلول، زمان تماس و دوز جاذب افزایش می‏یابد. بیشترین درصد حذف یون‏های فلزی سنگین در شرایط pH=5، t=50 دقیقه و 0.16 گرم جاذب (شرایط آزمایش کنونی) بوده است که مقادیر 53، 79، 61، 89 و 99.5% به‌ترتیب برای یون‏های نیکل، روی، کادمیوم، کروم و سرب از محلول آبی به دست آمد. نانوکامپوزیت مزوپروس سیلیکا/اکسیدآهن سنتز شده توسط آنالیزهای پراش‏ اشعه ایکس(XRD)، طیف‏سنجی تبدیل فوریه مادون قرمز(FTIR)، مغناطیس سنج نمونه ارتعاشی(VSM)، جذب- واجذب گاز نیتروژن(BET) و میکروسکوپ الکترونی روبشی نشر میدانی (FE-SEM) مورد شناسایی قرار گرفت. اندازه‏ گیری غلظت یون‏های فلزی محلول، توسط دستگاه طیف‏سنج جذب اتمی (AAS) انجام گرفت. طبق نتایج بدست آمده، نانوکامپوزیت MCM-41/γ-Fe2O3 دارای مساحت سطحی بالا (461.19m2/g)، حجم کل حفرات 0.4128cm3/g، میانگین قطر حفره 3.58nm، توزیع باریک اندازه حفرات و رفتار سوپرپارامغناطیسی می‏ باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis, characterization and application of mesoporous silica/maghemite nanocomposite in removal of heavy metal ions from aqueous solution

نویسندگان [English]

  • Shirin Kalantari 1
  • Mohammad Amini 1
  • Ali Shokuhfar 2

1 Department of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran, Iran.

2 Department of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran, Iran.

چکیده [English]

In the present study, mesoporous silica/iron oxide nanocomposite (MCM-41/γ-Fe2O3) was prepared with hydrothermal method and then the application of the nanocomposite as an adsorbent for the removal of Ni(II), Cd(II), Cr(III), Pb(II) and Zn(II) ions from aqueous solution was investigated. Furthermore, the effects of the solution pH, contact time and adsorbent dosages on removal percentage were studied. The results indicated that the adsorption of these ions on the surface of the adsorbent increase with increasing of solution pH, contact time and adsorbent dosage. The maximum percent removal (in the condition of: pH=5, t=50min, w=0.16g) of Ni(II), Zn(II), Cd(II), Cr(III) and Pb(II) ions was reached 53, 79, 61, 89 and 99.5%, respectively. The synthesized mesoporous silica/iron oxide nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), nitrogen adsorption-desorption (BET) and Field Emission Scanning electron microscopy (FE-SEM). The concentrations of metal ions of the solutions were measured by atomic absorption spectroscopy (AAS). According to the results, MCM-41/γ-Fe2O3 nanocomposite exhibited a large surface area 461.19m2/g, a total pore volume 0.4128cm3/g, a mean pore diameter 3.58nm, a narrow pore size distribution and the superparamagnetic behavior.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Mesoporous silica
  • Iron oxide
  • Magnetic properties
[1]  Hofmann, A., Thierbach, S., Semisch, A., Hartwig, A., Taupitz, M., Ruhl, E. and Graf, Ch., “Highly Monodisperse Water-Dispersable Iron Oxide Nanoparticles for Biomedical Applications”, Journal of Materials Chemistry, Vol. 20, pp. 7842–7853, 2010.
[2]  Ahmadi, R. and Shaeri, M. H., “Synthesis and Application of Iron Oxide Nanoparticles Coated with Iodine for Dual Medical CT-MRI Imaging”, In Persian, Journal of Nanomaterials, Vol. 9, No. 30, pp. 121-129, 2017.
[3] Frey, N. A., Peng, Sh., Cheng, K. and Sun, Sh., “Magnetic Nanoparticles: Synthesis, Functionalization, and Applications in Bioimaging and Magnetic Energy Storage”, Chemical Society Reviews, Vol. 38, pp. 2532–2542, 2009.
[4] Gupta, V.K., Agarwal, Sh. and Saleh, T. A., “Chromium Removal by Combining the Magnetic Properties of Iron Oxide with Adsorption Properties of Carbon Nanotubes”, water research Vol. 45, pp. 2207-2212, 2011.
[5] Fattahi, H., Koselou, M. and Oskoei, Y. M., “Selective Separation and Removal of Toxic Heavy Metal Ions from Water by Magnetic Ion-imprinted Nano Polymers”, In Persian, Polymerization, Vol. 6, No. 4, pp. 20-35, 2016.
[6] Koo, B., Xiong, H., Slater, M. D., Prakapenk, V. B., Balasubramanian, M., Podsiadlo, P., Johnson, Ch. S., Rajh, T. and Shevchenko, E. V., “Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries”, Nano Letters, Vol. 12, pp. 2429−2435, 2012.
[7] Cuong, N. D., Khieu, D. Q., Hoa, T. T., Quang, D. T., Viet, P. H., Lam, T. D., Hoa, N. D. and Hieu, N. V., “Facile Synthesis of a-Fe2O3 Nanoparticles for High-Performance CO Gas Sensor”, Materials Research Bulletin, Vol. 68, pp. 302–307, 2015.
[8] Ghasemi, E., Ziyadi, H., Afshar, A. M. and Sillanpää, M., “Iron Oxide Nanofibers: A New Magnetic Catalyst for Azo Dyes Degradation in Aqueous Solution”, Chemical Engineering Journal, Vol. 264, pp. 146–151, 2015.
[9] Kong, A., Wang, H., Li, J. and Shan, Y., “Preparation of Super Paramagnetic Crystalline Mesoporous γ-Fe2O3 with High Surface”, Materials Letters, 62, pp. 943-945, 2008.
[10] Mitra, A., Vázquez-Vázquez, C., López-Quintela, M. A., Paul B. K. and Bhaumik, A., “Soft-Templating Approach for the Synthesis of High Surface Area and Superparamagnetic Mesoporous Iron Oxide Materials”, Microporous and Mesoporous Materials, Vol. 131, pp. 373–377, 2010.
[11] Wang, X., Lin, K. S. K., Chan, J. C. C. and Cheng, S., “Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials”, The Journal of Physical Chemistry B, Vol. 109, pp. 1763-1769, 2005.
[12] Razeghi, N., Hashemi, S.H., Jadidi, Kh and Aghapoor, K., “Performance of Mesopore MCM-41 with a Nanoporous Structure in Removing Phenol from Water”, In Persian, Journal of Water and Wastewater, Vol. 25, No. 94, pp. 1-9, 2013.
[13] Kamani, H., Panahi, A. H., Ashrafi, S. D., Kord Mostafapour, F. and Omrani Gargari, N. S., “Efficiency Evaluation Mesopore Sillica Nanoporous Materials in Removal of Cephalexin from Aqueous Solution by Response Surface Methodology”, In Persian, Iranian Journal of Health and Environment, Vol. 10, No. 3, pp. 349-362, 2017.
[14] Kumar, P. and Guliants, V. V., “Periodic Mesoporous Organic–Inorganic Hybrid Materials: Applications in Membrane Separations and Adsorption”, Microporous and Mesoporous Materials, Vol. 132, pp. 1–14, 2010.
[15] Kim, Y.C., Jeong, J.Y., Hwang, J.Y., Kim, S.D., Yi, S.C. and Kim, W.J., “Incorporation of Heteropoly Acid, Tungstophosphoric Acid within MCM-41 via Impregnation and Direct Synthesis Methods for the Fabrication of Composite Membrane of DMFC”, Journal of Membrane Science, Vol. 325, pp. 252–261, 2008.
[16] Morales, M. A., Mascarenhas, A. J.S., Gomes, A. M. S., Leite, C. A.P., Andrade, H. M. C., de Castilho, C. M. C. and Galembeck, F., “Synthesis and Characterization of Magnetic Mesoporous Particles”, Journal of Colloid and Interface Science, Vol. 342, pp. 269-277, 2010.
[17] Wang, Ch., Ao, Y., Wang, P., Qian, J., Hou, J. and Zhang, S., “A Simple Method for Preparation of Superparamagnetic Porous Silica”, Journal of Alloys and Compounds, Vol. 493, pp. 410–414, 2010.
[18] Chen, X., Lam, K. F. and Yeung, K. L., “Selective Removal of Chromium from Different Aqueous Systems Using Magnetic MCM-41 Nanosorbents”, Chemical Engineering Journal, Vol. 172, pp. 728– 734, 2011.
[19] Egodawatte, Sh., Datt, A., Burns, E. A. and Larsen, S. C., “Chemical Insight into the Adsorption of Chromium(III) on Iron Oxide/Mesoporous Silica Nanocomposites”, Langmuir, pp. 1-10, 2015.
 
[20] Mueller, P. S., Parker, C. P. and Larsen, S. C., “One-pot synthesis of iron oxide mesoporous silica core/shell nanocomposites”, Microporous and Mesoporous Materials, Vol. 204, pp. 173–179, 2015.
[21] Surowiec, Z., Wiertel, M., Budzynski, M., Sarzynski, J. and Goworek, J., “Magnetite Nanowires in MCM-41 Type Mesoporous Silica Templates”, Journal of Non-Crystalline Solids, Vol. 354, pp. 4271–4274, 2008.
[22] Wang, Y., Ren, J., Liu, X., Wang, Y., Guo, Y., Guo, Y. and Lu, G., “Facile Synthesis of Ordered Magnetic Mesoporous γ-Fe2O3/SiO2 Nanocomposites with Diverse Mesostructures”, Journal of Colloid and Interface Science, Vol.326, pp. 158–165, 2008.
[23] Sheng, X., Gao, J., Han, L., Jia, Y. and Sheng, W., “One-Pot Synthesis of Tryptophols with Mesoporous MCM-41 Silica Catalyst Functionalized with Sulfonic Acid Groups”, Microporous and Mesoporous Materials, Vol. 143, pp. 73–77, 2011.
[24] Sen, T. and Bruce, I. J., “Mesoporous Silica–Magnetite Nanocomposites: Fabrication, Characterization and Applications in Biosciences”, Microporous and Mesoporous Materials, Vol. 120, pp. 246–251, 2009.
[25] Darezereshki, E., “One-Step Synthesis of Hematite (α-Fe2O3) Nano-Particles by Direct Thermal-Decomposition of Maghemite”, Materials Letters, Vol. 65, pp. 642–645, 2011.
[26] Yang, H., Deng, Y. and Du, Ch., “Synthesis and Optical Properties of Mesoporous MCM-41 Containing Doped TiO2 Nanoparticles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 339, pp. 111–117, 2009.
[27] Sener, C., Dogu, T. and Dogu, G., “Effects of Synthesis Conditions on the Structure of Pd Incorporated MCM-41 Type Mesoporous Nanocomposite Catalytic Materials with High Pd/Si Ratios”, Microporous and Mesoporous Materials, Vol. 94, pp. 89–98, 2006.
[28] Heidari, A., Younesi, H. and Mehraban, Z., “Removal of Ni(II), Cd(II), and Pb(II) from a Ternary Aqueous Solution by Amino Functionalized Mesoporous and Nano Mesoporous Silica”, Chemical Engineering Journal, Vol. 153, pp. 70–79, 2009.