نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشکده مهندسی،دانشگاه بیرجند، بیرجند.

2 دانشیار، مهندسی مکانیک،دانشکده مهندسی،دانشگاه بیرجند، بیرجند.

چکیده

اتصال چسبی در مقایسه با روش-های اتصال مکانیکی دارای توزیع تنش یکنواخت، عملکرد خستگی مناسب تر و اثر کاهش وزن بهتر می باشد. برخی از خرابی‌ها در اتصال چسبی به دلیل وجود آلودگی و زبری نامناسب در سطوح اتصال ایجاد می‌شوند. در این مطالعه تاثیر عملیات سطحی مختلف بر رفتار مکانیکی اتصال چسبی کامپوزیت/آلومینیوم مود اول شکست و با استفاده از نمونه تیریکسرگیردار دولبه بررسی می-شوند. عملیات سطحی با سه روش پوسته‌کنی، سنباده زنی و لیزر برای چسبنده‌های کامپوزیتی و دو روش سنباده زنی و لیزر برای چسبنده-های آلومینیومی انجام شده است. در روش عملیات سطحی لیزری فاصله عرضی شیارها و قطره دایره لیزر ثابت و سرعت اسکن و توان دستگاه متغیر در نظر گرفته شده است. زبری سنجی سطح چسبنده‌ها نشان دهنده افزایش زبری سطح تا مقدار مشخصی از چگالی انرژی لیزر می باشد، اما بعد از آن بدلیل ذوب شدن سطح چسبنده‌ها زبری کاهش یافته است. بررسی نتایج نشان دهنده افزایش 13.43% نرخ رهایی انرژی کرنشی بحرانی مود اول شکست با استفاده از روش عملیات سطحی لیزر نسبت به روش سنباده‌زنی و افزایش7.46% نرخ رهایی انرژی کرنشی بحرانی مود اول شکست نسبت به روش پوسته-کنی می باشد. همچنین بررسی سطح شکست اتصال نشان دهنده افزایش حالت شکست پارگی الیاف در سطح اتصال با انتخاب درست پارامترهای لیزر می‌باشد که باعث بهبود استحکام اتصال شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental investigation of the effect of different surface treatment on mode I fracture behavior of composite/aluminum adhesive joint

نویسندگان [English]

  • Amir Kariman Moghadam 1
  • Saeed Rahnama 2

1 Department of Mechanical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.

2 Department of Mechanical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.

چکیده [English]

Compared to mechanical joining methods, adhesive bonded joints have uniform stress distribution, good fatigue performance and better weight reduction effect. Some failures in the adhesive bonded joints are caused by the presence of contamination and inappropriate roughness in the joint surfaces. In this study, the effect of different surface treatment on the mechanical behavior of the composite/aluminum adhesive joint in the mode I of fracture is investigated by using Double-cantilever beam specimen. Surface treatment has been done with three methods of Peel Ply Processing, Sanding and Laser for composite adherent and two methods of Sanding and Laser for aluminum adherent. In the laser surface treatment method, the transverse distance of the grooves and the spots diameter are fixed, and the scanning speed and power of the machine are variable. The surface roughness measurement of the adherents shows the increase of the surface roughness up to a certain value of the laser energy density, but after that the roughness has decreased due to the melting of the adherent surface. The results show an increase of 13.43% and 7.46% in the critical strain energy release rate of the mode I of fracture using the laser surface treatment method compared to the Sanding method and the Peel Ply Processing method, respectively. Also, examination of the fracture surface of the joint shows an increase in the failure mode of fiber tearing at the joint surface with the correct selection of laser parameters, which has improved the strength of the joint.

کلیدواژه‌ها [English]

  • Surface Treatment
  • Adhesive Joint
  • Composite
  • Mod I Fracture
[1] Mu, W., Na, J., Tan, W., Wang, G., Shen, H. and Li, X., “Durability of adhesively bonded CFRP-aluminum alloy joints subjected to coupled temperature and alternating load” International Journal of Adhesion and Adhesives, Vol. 99, pp. 102583, 2020.
[2] Alfano, M., Lubineau, G., Furgiuele, F. and Paulino, G. H., “Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints”, International Journal of Adhesion and Adhesives, Vol. 39, pp. 33-41, 2012.
[3] Rotel, M., Zahavi, J., Tamir, S., Buchman A. and Dodiuk, H.,
“Pre-bonding technology based on excimer laser surface treatment”, Appl. Surface Sci. Vol. 154–155, pp. 610–616, 2000.
[4] Strobel, M., Lyons, C.S. and Mittal K.L., “Plasma Surface Modification of Polymers: Relevance to Adhesion”, CRC Press, Boca Raton, FL., pp. 201-210, 1994.
[5] Fenga, Z., Zhaoa, H., Tana, C., Chena, B., Songa, X. and
Feng, J., “Influence of laser process parameters on the characteristic of 30CrMnSiA steel substrate and adhesively bonded joints,” Optics and Laser Technology, Vol. 123, pp. 105920, 2020.
[6] Rudawska, A., “Selected aspects of the effect of mechanical treatment on surface roughness and adhesive joint strength of steel sheets”, International Journal of Adhesion and Adhesives, Vol. 50, pp. 235-243, 2014.
[7] Sorrentino, L., Polini, W., Bellini, C. and Parodo, G.,Surface treatment of CFRP: influence on single lap joint performances”, International Journal of Adhesion and Adhesives, Vol. 85, pp. 225-233, 2018.
[8] Najafpour Mollabashi, M., Safarabadi, M., Haghighi Yazdi, M., “Experimental investigation of surface finishing in cracked aluminum plates reinforced by composite patch under fatigue loading”, In Persian, Journal of Science and Technology of Composites, Vol. 7, No. 4, pp. 1171-1176, 2021.
[9] Zhan, X., Li, Y., Gao, C., Wang, H. and Yang, Y., “Effect of infrared laser surface treatment on the microstructure and properties of adhesively CFRP bonded joints”, Optics and Laser Technology, Vol. 106, pp. 398-409, 2018.
[10] Sun, C., Min, J., Lin, J., Wan, H., Yang, S. and Wang, S., “The   effect of laser ablation treatment on the chemistry, morphology and bonding strength of CFRP joints”, International Journal of Adhesion and Adhesives, Vol. 84, pp.325-334, 2018. 
[11] Tao, R., Alfano, M. and Lubineau, G., “Laser-based surface patterning of composite plates for improved secondary adhesive bonding”, Composites Part A: Applied Science and Manufacturing, Vol. 109. pp. 84-94, 2018.
[12] Moreira, R. D. F., Oliveira, V., Silva, F. G. A., Vilar, R. and De Moura, M. F. S. F., “Influence of femtosecond laser treated surfaces on the mode I fracture toughness of carbon-epoxy bonded joints”, International Journal of Adhesion and Adhesives, Vol. 82, pp.108-113, 2018.
[13] Kim, W. S. and Lee, J. J., “Fracture characterization of interfacial cracks with frictional contact of the crack surfaces to predict failures in adhesive-bonded joints”, Engineering Fracture Mechanics, Vol. 76, No. 12, pp. 1785-1799, 2009.
[14] Indeck, J., Demeneghi, G., Mayeur, J., Williams, C. and Hazeli, K., “Influence of reversible and non-reversible fatigue on the microstructure and mechanical property evolution of 7075-T6 aluminum alloy”, International Journal of Fatigue, Vol. 145,
 pp. 106094, 2020.
[15] De Moura, M.F.S.F., Campilho, R.D.S.G. and Gonçalves, J.P.M., “Pure mode II fracture characterization of composite bonded joints”, International Journal of Solids and Structures, Vol. 46,
No. 6, pp. 1589–1595, 2009.
[16] Musiari, F., Moroni, F., Favi C. and Pirondi, A., “Durability assessment of laser treated aluminium bonded joints”, International Journal of Adhesion and Adhesives, Vol. 93, pp. 102323, 2019.
[17] ASTM, D5528-01: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, American Standard of Testing Methods, vol. 03, no. Reapproved 2007. pp. 1–12, 2014.
[18] Anderson, T. L., “Fracture mechanics: fundamentals and applications”, Third Edition, Boca Raton: CRC press, pp. 38-40, 2005.
[19] Han, G., Tan, B., Cheng, F., Wang, B., Leong, Y.K. and Hu, X., “CNT toughened aluminium and CFRP interface for strong adhesive bonding”, Nano Materials Science, Vol. 4, No. 3, pp. 266–275, 2022.
[20] Chen, Y., Li, M., Yang, X. and Wei, K., “Durability and mechanical behavior of CFRP/Al structural joints in accelerated cyclic corrosion environments,” International Journal of Adhesion and Adhesives” Vol. 102, pp. 102695, 2020.