نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، مهندسی نساجی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

در این پژوهش، رفتار خمشی کامپوزیت‌های خالص و هیبرید درون‌ لایه‌ای تقویت شده با الیاف ترد و انعطاف‌پذیر بر مبنای روش المان محدود مدل‌سازی شده است. بدین منظور با استفاده از خواص ابعادی، فیزیکی و مکانیکی، کامپوزیت‌هایی به‌صورت چهار لایه با آرایش تک جهته در نرم‌افزار آباکوس مدل‌سازی و سپس آزمایش خمش سه‌نقطه‌ای روی آن‌ها شبیه‌سازی شد. در شبیه‌سازی‌های انجام شده، خواص مکانیکی لایه‌های کامپوزیت به‌صورت رفتار غیر خطی (الاستیک-پلاستیک) تعریف شد. برای ارزیابی شبیه‌سازی‌های انجام شده، نتایج حاصل از تحلیل نرم‌افزار با نتایج آزمایش خمش در حالت تجربی مقایسه شده است. نتایج نشان می‌دهند شبیه‌سازی انجام شده با دقت بالایی قادر به تعیین نیروی خمشی در خیزهای مختلف هستند. به گونه‌ای که حداکثر درصد اختلاف بین نتایج عددی و تجربی در بیشینه نیروی خمش، 7/9 درصد بوده است. همچنین نتایج تحلیل نحوه توزیع تنش در هر لایه از کامپوزیت نشان می‌دهند زمانی که نمونه هیبرید در برابر فرآیند خمش به نقطه تسلیم می‌رسد لایه‌های بیرونی از مقدار بیشینه تنش طولی خود برای مقاومت در برابر خمش استفاده می‌کنند اما در همین زمان لایه‌های میانی حداکثر از 30 درصد ظرفیت خود استفاده می‌نمایند.

چکیده تصویری

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Numerical modeling of bending behavior of intra-ply hybrid composites using finite element method

نویسنده [English]

  • Majid Tehrani-Dehkordi

Department of Carpet, Shahrekord University, Shahrekord, Iran

چکیده [English]

In this study, the bending behavior of pure and intra-ply hybrid composites reinforced with brittle and ductile fibers were simulated based on a finite element method. For this purpose, a four-ply composite with the unidirectional stacking sequence was designed by using the dimensional, physical and mechanical properties. In this way, the three point bending test was simulated on the model composites by using Abaqus software. In these models, the mechanical properties of composite layers were defined base on non-linear (elastic-plastic) behaviors. In order to validate the simulated model; the theoretical results were compared with the experimental ones. The results reveal that the model can predict the bending force at different deflection, accurately. As can be seen, the maximum difference between numerical and experimental results for fracture bending load is about 9.7%. In addition, the results distribution analysis at each layer of hybrid composites show that at the yield stress point, the outer layers of composites bear the longitudinal stress up to maximum strength but at this point the inner layers just used 30 percent of their maximum longitudinal stress

کلیدواژه‌ها [English]

  • Modeling
  • Composite
  • Intra-ply hybrid
  • Bending behavior
[1]    Toubal, L. Karama, M. and Lorrain, B., “Stress Concentration in a Circular Hole in Composite Plate,” Composites Structure, Vol. 68, pp. 31–36, 2005.
[2]    Jones, R.M.,”Mechanics of Composite Materials,” Second ed., Taylor & Francis, Inc. London, UK, 1999 .
[3] Naik, N.K. and Ganesh, V.K., “Prediction of N-axes Elastic Properties of Plain Weave Fabrics Composites,” Composite Science and Technology, Vol. 45, pp. 135-152, 1992.
[4] Shokrieh, M.M. and Fakhar, N., “Experimental, Analytical and Numerical Studies of Composite Sandwich Panels under Low Velocity Impact Loadings," Mechanics of Composite Materials, Vol. 47, No. 6, pp. 643-658, 2011.
[5] Liyong, T. Mouritz, A.P. and Bannister, M.K., “3D Fiber Reinforced Polymer Composites,” Elsevier Science Ltd, UK, 1991.
[6]    Sharbatdar, A. and Fazilati, J., “Geometrically Nonlinear Analysis of Moderately Thick Curved Composite Panels Under Lateral Load,” Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 53-64, 2015.
[7]    Shokrieh, M.M. and Karamnejad, A., "Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method,” International Journal of Aerospace and Mechanics Engineering, Vol. 5, No. 3, pp. 63-69, 2011.
[8] Mackerle, J., “Finite Element Analyses and Simulations of Manufacturing Processes of Composites and Their Mechanical Properties: A Bibliography (1985–2003),” Computational Material Science, Vol. 31, No. 3, pp. 187–219, 2004.
[9] Tan, P., Tong, L. and Steven, G.P., “Modeling for Predicting the Mechanical Properties of Textile Composites- A Review,” Composites, Vol. 28, No. ??, pp. 903-922, 1997.
[10] Whitcom, J.D., “Three-Diensinal Stress Analysis of Plain Weave Composites,” Proceeding of the Third Symposium on Composite Material: Fatigue and Fracture, Orlando, Florida, 1989.
[11] Glaessgen, E.H. Pastore, C.M. Griffin, O.H. and Birger, A., “Geometrical and Finite Element Modeling of Textiles Composites,” Composites, Vol. 27, No. 1, pp. 43-50, 1996.
[12] Thompson, D.M. and Griffin, O.H., “Verification of a 2-D to 3-D Global Local Finite Element Method for Symmetric Laminates,” Journal of Reinforced Plastics & Composites, Vol. 11, No. 8, pp. 910-931, 1992
[13] Tehrani-dehkordi, M. Nosraty, H. and Shokrieh, M.M., “Low Velocity Impact Simulation of Intraply Hybrid Composites Reinforced with Brittle and Ductile Fibers,” In Persian, Journal of Advanced Materials in Engineering, Vol. 32, No. 1, pp. 115-124, 2013.
[14] Niezgoda, T. and Derewonko, A., “Multiscale Composite FEM Modeling,” Procedia Engineering, Vol. 1, No. 1, pp.209–212, 2009.
[15] Hossain, S.J. Sinha, P.K. and Sheikh, A.H., “A Finite Element Formulation for the Analysis of Laminated Composite Shells,” Computers & Structures, Vol. 82, No.20, pp. 1623-1638, 2004.
[16] Kakani, G.S. and Prasanthi, P.P., “Prediction of Nonlinear Behavior of Thin Skew Plates with Cut-out Using Finite Element Analysis,” Engineering Research & Technology, Vol. 1, 2012.
[17] Park, R. and Jang, J., "Stacking Sequence Effect of Aramid-UHMPE Hybrid Composites by Flexural Test Method,” Polymer Testing, Vol. 16, pp. 549-562, 1997.
[18] Ullah, H. Harland, A.R. and Silberschmidt, V.V., “Damage Modeling in Woven-Fabric CFRP Laminates under Large-Deflection Bending,” Computational Material Science, Vol. 64, pp. 130–135, 2012.
[19] Malekzadeh Fard, K. and Rezaei Hassanabadi, M., “Free Vibration and Static Bending Analysis of Curved Sandwich Panel with Magneto-Rheological Fluid Layer in Sheets using Improved High Order Sandwich Panel Theory,” Journal of Science and Technology of Composite, Vol. 1, No. 2, pp. 49-62, 2015.
[20] Dong, C. and Davies, I.J., “Optimal Design for the Flexural Behaviour of Glass and Carbon Fibre Reinforced Polymer Hybrid Composites,” Material and Design, Vol.  37, pp. 450–457, 2012.
[21] Tehrani-Dehkordi, M. Nosraty, H. and Rajabzadeh, M.H., “Effects of Plies Stacking Sequence and Fiber Volume Ratio on Flexural Properties of Basalt/Nylon-Epoxy Hybrid Composites,” Fibers and polymers, Vol. 16, No. 4, pp. 918-925, 2011.
 [22] Ghaei, A., "Modeling of Nonlinear Elastic Modulus Variation During Cyclic Loading,” In Persian, Modares Mechanical Engineering, Vol. 13, No. 7, pp. 10-17, 2013.
[23] Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulation, Annual Book of ASTM Standard, D 790-03, 2003.