نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسالمی واحد تهران جنوب، تهران.

2 استادیار، مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسالمی واحد تهران جنوب، تهران.

3 دانشیار، مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسالمی واحد تهران جنوب، تهران.

10.22068/jstc.2023.563568.1803

چکیده

در دهه‌های اخیر، استفاده از نانو ذرات در ساختارهای کامپوزیتی و پانل‌های ساندویچ کامپوزیتی به دلیل بدست آمدن خواص مکانیکی و فیزیکی گسترش پیدا کرده است. در مطالعه حاضر، اثر نانو ذرات گرافن بر مقاومت یک ساختار پانل ساندویچی با مدل هندسه‌ای رگه‌ای جدید تحت بارگذاری شبه استاتیک و ضربه سرعت پایین مورد بررسی قرار گرفته است. ساختارهای رگه ای از لایه های شیشه / اپوکسی با درصد‌های مختلف 0.0، 0.1، 0.3 و 0.5 درصد نانو ذرات گرافن ساخته شده‌اند. بعلاوه، در مرکز ساختار رگه ساندویچی، از فوم پلی‌اورتان استفاده شده است. جهت بررسی آسیب در درون ساختار رگه، تصاویر نمای برش خورده آسیب تهیه و نتایج آن گزارش شده است. علاوه بر این، از آنالیز FE-SEM به منظور بررسی ریزساختار و ارزیابی توزیع نانو ذرات گرافن در ساختار پلیمری استفاده شد. ویژگی‌های قابلیت ضربه‌پذیری در نمونه های آزمایش شده مورد بحث قرار گرفت. نتیجه گرفته شد که این نوع از ساختار رگه‌ای ساندوچی با هسته فوم پلی‌اورتان، می تواند انتشار آسیب در بارگزاری شبه استاتیک و تست سقوط وزنه را محدود کند و ساختار ساندویچی را سالم نگه دارد. از طرفی، مشاهده شده است که در اثر ضربه چندین حالت شکست مختلف از جمله شکست الیاف، ترک ماتریس، لایه لایه شدگی، جدا شدگی بین الیاف و فوم، شکست فوم و له شدن فوم رخ داده است. بعد از آنالیز FE-SEM مشاهده شد که ساختار ساندویچی با 0.3 درصد نانو ذرات، دارای تراکم بیشتری نسبت به سایر ساختارهای آزمایش شده می‌باشد

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of graphene nanoparticles on the strength of sandwich panel structure under quasi-static loading and low-velocity impact

نویسندگان [English]

  • Mahdi Rezvani Tavakol 1
  • Mahdi Yarmohammad Tooski 2
  • Mohsen Jabbari 3
  • Mehrdad Javadi 2

1 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

3 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

In recent decades, the use of nanoparticles in composite structures and composite sandwich panels has expanded due to the achievement of mechanical and physical properties. In the present study, the effect of graphene nanoparticles on the strength of a sandwich panel structure with a new vein geometry model under quasi-static loading and low-velocity impact has been investigated. The vein structures are made of glass/epoxy layers with different percentages of 0.0, 0.1, 0.3 and 0.5% of graphene nanoparticles. In addition, polyurethane foam was used in the center of the sandwich vein structure. In order to check the damage inside the vein structure, cut-out images of the damage have been prepared and the results have been reported. In addition, FE-SEM analysis was used to investigate the microstructure and evaluate the distribution of graphene nanoparticles in the polymer structure. The characteristics of crashworthiness in the tested samples were discussed. It was concluded that this type of sandwich vein structure with polyurethane foam core can limit the propagation of the damage in quasi-static loading and drop weight test and keep the sandwich structure healthy. On the other hand, as a result of the impact, several different failure modes have occurred, including fiber failure, matrix cracking, delamination, Foam detachment, foam failure, and foam crushing. After the FE-SEM analysis, it was observed that the sandwich structure with 0.3% of nanoparticles has a higher density than the other tested structures

کلیدواژه‌ها [English]

  • Composite structure
  • Sandwich panel
  • Low-velocity impact
  • Quasi-static test
  • Energy absorption
[1] Zangana, S., Epaarachchi, J., Ferdous, W. and Leng, J., “A Novel Hybridised Composite Sandwich Core with Glass, Kevlar and Zylon Fibres–Investigation under Low-Velocity Impact“ International Journal of Impact Engineering, Vol. 137, pp. 103430, 2020.
[2] McCracken, A. and Sadeghian, P., “Partial-Composite Behavior of Sandwich Beams Composed of Fiberglass Facesheets and Woven Fabric Core“ Thin-walled structures, Vol. 131, pp. 805-815, 2018.
[3] Castanié, B., Bouvet, C. and Ginot, M., “Review of Composite Sandwich Structure in Aeronautic Applications“ Composites Part C: Open Access, Vol. 1, pp. 100004, 2020.
[4] Zhu, Y. and Sun, Y., “Low-Velocity Impact Response of Multilayer Foam Core Sandwich Panels with Composite Face 
Sheets“ International Journal of Mechanical Sciences, Vol. 209, pp. 106704, 2021.
[5] He, Y., Zhang, X., Long, S., Yao, X. and He, L., “Dynamic Mechanical Behavior of Foam-Core Composite Sandwich 
Structures Subjected to Low-Velocity Impact“ Archive of Applied Mechanics, Vol. 86, No. 9, pp. 1605-1619, 2016.
[6] Rezaei Golshan, N., Pol, M. H. P. and Najafzade Asl, O., “Numerical Investigation of the Parameters Affecting on the 
Composite Tubes Response under Axial Impact“ Journal of Science and Technology of Composites, Vol. 6, No. 2, pp. 200-212, 2019.
[7] Kumar, S. A. and Kumar, S. A., “Low-Velocity Impact Damage and Energy Absorption Characteristics of Stiffened Syntactic Foam Core Sandwich Composites“ Construction and Building Materials, Vol. 246, pp. 118412, 2020.
[8] Zhu, S. and Chai, G. B., “Damage and Failure Mode Maps of Composite Sandwich Panel Subjected to Quasi-Static Indentation and Low Velocity Impact“ Composite structures, Vol. 101, pp. 204-214, 2013.
[9] Sarasini, F., Tirillò, J., Ferrante, L., Sergi, C., Russo, P., Simeoli, G., Cimino, F., Ricciardi, M. R. and Antonucci, V., “Quasi-Static and Low-Velocity Impact Behavior of Intraply Hybrid Flax/Basalt Composites“ Fibers, Vol. 7, No. 3, pp. 26, 2019.
[10]Belingardi, G. and Vadori, R., “Influence of the Laminate Thickness in Low Velocity Impact Behavior of Composite Material Plate“ Composite structures, Vol. 61, No. 1-2, pp. 27-38, 2003.
[11]Symons, D. D., “Characterisation of Indentation Damage in 0/90 Lay-up T300/914 Cfrp“ Composites science and technology, Vol. 60, No. 3, pp. 391-401, 2000.
[12]Breen, C., Guild, F. and Pavier, M., “Impact of Thick Cfrp Laminates: The Effect of Impact Velocity“ Composites Part A: 
Applied Science and Manufacturing, Vol. 36, No. 2, pp. 205-211, 2005.
[13]Ahmed, A., Bingjie, Z., Ikbal, M. H., Qingtao, W., Obed, A. and Wei, L., “Experimental Study on the Effects of Stacking Sequence on Low Velocity Impact and Quasi-Static Response of Foam Sandwich Composite Structures“ Advances in Structural Engineering, Vol. 18, No. 11, pp. 1789-1805, 2015.
[14]Zhang, W., Qin, Q., Li, J., Li, K., Poh, L., Li, Y., Zhang, J., Xie, S., Chen, H. and Zhao, J., “Deformation and Failure of Hybrid Composite Sandwich Beams with a Metal Foam Core under QuasiStatic Load and Low-Velocity Impact“ Composite Structures, Vol. 242, pp. 112175, 2020.
[15]Emamieh, H. R., Yarmohammad Tooski, M., Jjabbari, M. and Khorshidvand, A. R., “An Experimental Investigation of Impact Resistance of Sandwich Panels Reinforced by Nano-Silica and Nano-Clay“ Journal of Science and Technology of Composites, Vol. 8, No. 2, pp. 1573-1582, 2021.
[16]Spronk, S., Kersemans, M., De Baerdemaeker, J., Gilabert, F., Sevenois, R., Garoz, D., Kassapoglou, C. and Van Paepegem, W., “Comparing Damage from Low-Velocity Impact and Quasi-Static Indentation in Automotive Carbon/Epoxy and Glass/Polyamide-6 Laminates“ Polymer Testing, Vol. 65, pp. 231-241, 2018.
[17]Karakuzu, R., Djele, A. and Dogan, A., “High Temperature Effect on Quasi-Static and Low Velocity Impact Behaviors of Advanced Composite Materials“ Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, No. 23, pp. 7110-7119, 2021.
[18]Korsavi-Kashani, S. A. and Eslami-Farsani, R., “Exprimental Investigation on Effect of Functionalized Nano Silica and Nano Graphene on Basalt Fibers-Epoxy Composite under High Velocity Impact“ Journal of Science and Technology of Composites, Vol. 7, No. 1, pp. 675-682, 2020.
[19]Ghaderi, A., Ghassemi, A. and Yarmohamad Toski, M., “An Experimental Investigation of Quasi-Static Indentation on a 
Composite Sandwich Panel Made of Basalt Fiber Using NanoGraphene“ Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 109-118, 2019.
[20]Nakhaei, M.-R., Mohammadi, S., Naderi, G. and Ghoreishy, M.-H., “Experimental Study of Microstructure, Thermal and Mechanical Properties of Pa6/Nbr Nanocomposites Reinforced with Graphene Nanoparticle“ Journal of Science and Technology of Composites,Vol. 6, No. 3, pp. 419-426, 2019.
[21]Rezvani Tavakol, M., Yarmohammad Tooski, M., Jabbari, M. and Javadi, M., “Effect of Graphene Nanoparticles on the Strength of Sandwich Structure Inspired by Dragonfly Wings under Low‐Velocity Impact“ Polymer Composites, Vol. 42, No. 10, pp. 5249-5264, 2021.
[22]Zhang, B., Asmatulu, R., Soltani, S. A., Le, L. N. and Kumar, S. S., “Mechanical and Thermal Properties of Hierarchical Composites Enhanced by Pristine Graphene and Graphene Oxide Nanoinclusions“ Journal of Applied Polymer Science, Vol. 131, No. 19, 2014.
[23]Hülagü, B., Ünal, H. Y., Acar, V., Khan, T., Aydın, M. R., Aydın, O. A., Gök, S., Pekbey, Y. and Akbulut, H., “Low-Velocity Impact and Bending Response of Graphene Nanoparticle-Reinforced Adhesively Bonded Double Strap Joints“ Journal of Adhesion Science and Technology, Vol. 35, No. 22, pp. 2391-2409, 2021.
[24]Choupani Chaydarreh, K., Shalbafan, A. and Welling, J., “Effect of Ingredient Ratios of Rigid Polyurethane Foam on Foam Core Panels Properties“ Journal of Applied Polymer Science, Vol. 134, No. 17, 2017.
[25]Wang, H., Li, T.-T., Wu, L., Lou, C.-W. and Lin, J.-H., “Spacer Fabric/Flexible Polyurethane Foam Composite Sandwiches: 
Structural Design and Quasi-Static Compressive, Bursting and Dynamic Impact Performances“ Journal of Sandwich Structures & Materials, Vol. 23, No. 4, pp. 1366-1382, 2021.
[26]Zhao, F., Wu, L., Lu, Z., Lin, J.-H. and Jiang, Q., “Design of Shear Thickening Fluid/Polyurethane Foam Skeleton Sandwich Composite Based on Non-Newtonian Fluid Solid Interaction under Low-Velocity Impact“ Materials & Design, Vol. 213, pp. 110375, 2022.
[27]Zeng, X., Tang, T., An, J., Liu, X., Xiang, H., Li, Y., Yang, C. and Xia, T., “Integrated Preparation and Properties of Polyurethane‐Based Sandwich Structure Composites with Foamed Core Layer“ Polymer Composites, Vol. 42, No. 9, pp. 4549-4559, 2021.
[28]Khan, T., Acar, V., Aydin, M. R., Hülagü, B., Akbulut, H. and Seydibeyoğlu, M. Ö., “A Review on Recent Advances in Sandwich Structures Based on Polyurethane Foam Cores“ Polymer and Ahmad, Z., “Crashworthiness AssComposites, Vol. 41, No. 6, pp. 2355-2400, 2020.
[29]Loganathan, S. B. and Shivanand, H. K., “Effect of Core Thickness and Core Density on Low Velocity Impact Behavior of Sandwich Panels with Pu Foam Core“ Journal of Minerals and Materials Characterization and Engineering, Vol. 3, No. 03, pp. 164, 2015.
[30]Garrido, M., Madeira, J., Proença, M. and Correia, J., “MultiObjective Optimization of Pultruded Composite Sandwich Panels for Building Floor Rehabilitation“ Construction and Building Materials, Vol. 198, pp. 465-478, 2019.
[31]Tarlochan, F. and Ramesh, S., “Composite Sandwich Structures with Nested Inserts for Energy Absorption Application“ Composite Structures, Vol. 94, No. 3, pp. 904-916, 2012/02/01/, 2012.
[32]Liu, Q., Xing, H., Ju, Y., Ou, Z. and Li, Q., “Quasi-Static Axial Crushing and Transverse Bending of Double Hat Shaped Cfrp Tubes“ Composite Structures, Vol. 117, pp. 1-11, 2014/11/01/, 2014.
[33]Mohsenizadeh, S., Alipour, R., Shokri Rad, M., Farokhi Nejad, A. essment of Auxetic FoamFilled Tube Filled Tube under Quasi-Static Axial Loading“ Materials & Design,Vol. 88, pp. 258-268, 2015/12/25/, 2015.
[34]Wu, F., Xiao, X., Yang, J. and Gao, X., “Quasi-Static Axial Crushing Behaviour and Energy Absorption of Novel Metal Rope Crochet-Sintered Mesh Tubes“ Thin-Walled Structures, Vol. 127, pp. 120-134, 2018/06/01/, 2018.
[35]Özbek, Ö., Bozkurt, Ö. Y. and Erkliğ, A., “An Experimental Study on Intraply Fiber Hybridization of Filament Wound Composite Pipes Subjected to Quasi-Static Compression Loading“ Polymer Testing, Vol. 79, pp. 106082, 2019/10/01/, 2019.
[36]Chiu, L. N. S., Falzon, B. G., Ruan, D., Xu, S., Thomson, R. S., Chen, B. and Yan, W., “Crush Responses of Composite Cylinder under Quasi-Static and Dynamic Loading“ Composite Structures,Vol. 131, pp. 90-98, 2015/11/01/, 2015.
[37]Kim, J.-S., Yoon, H.-J. and Shin, K.-B., “A Study on Crushing Behaviors of Composite Circular Tubes with Different Reinforcing Fibers“ International Journal of Impact Engineering, Vol. 38, No. 4, pp. 198-207, 2011/04/01/, 2011.
[38]Xu, J., Ma, Y., Zhang, Q., Sugahara, T., Yang, Y. and Hamada, H., “Crashworthiness of Carbon Fiber Hybrid Composite Tubes Molded by Filament Winding“ Composite Structures, Vol. 139, pp. 130-140, 2016/04/01/, 2016.
[39]Hu, D. Y., Luo, M. and Yang, J. L., “Experimental Study on Crushing Characteristics of Brittle Fibre/Epoxy Hybrid Composite Tubes“ International Journal of Crashworthiness, Vol. 15, No. 4, pp. 401-412, 2010/10/14, 2010.
[40]Zhu, G., Sun, G., Yu, H., Li, S. and Li, Q., “Energy Absorption of Metal, Composite and Metal/Composite Hybrid Structures under Oblique Crushing Loading“ International Journal of Mechanical Sciences, Vol. 135, pp. 458-483, 2018/01/01/, 2018.
[41]Feraboli, P., “Some Recommendations for Characterization of Composite Panels by Means of Drop Tower Impact Testing“ Journal of aircraft, Vol. 43, No. 6, pp. 1710-1718, 2006.
[42]Ulus, H., Üstün, T., Şahin, Ö. S., Karabulut, S. E., Eskizeybek, V. and Avcı, A., “Low-Velocity Impact Behavior of Carbon 
Fiber/Epoxy Multiscale Hybrid Nanocomposites Reinforced with Multiwalled Carbon Nanotubes and Boron Nitride
Nanoplates“ Journal of composite materials, Vol. 50, No. 6, pp. 761-770, 2016.
[43]Zhang, F., Mohmmed, R., Sun, B. and Gu, B., “Damage Behaviors of Foam Sandwiched Composite Materials under Quasi-Static Three-Point Bending“ Applied Composite Materials, Vol. 20, No. 6, pp. 1231-1246, 2013.