نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

2 دانشیار دانشکده مکانیک دانشگاه تربیت مدرس

چکیده

مقاله حاضر عملکرد مکانیکی و ظرفیت جذب انرژی ساختار مشبک سه بعدی دو ماده را از طریق رویکرد تجربی و عددی بررسی می‌کند. در ابتدا، با استفاده از ساخت افزایشی بخش بیرونی ساختار مشبک سه بعدی پیشنهادی با ماده ماده ترمو پلاستیک پلی اورتان ساخته شده است. با استفاده از یک سرنگ، رزین اپوکسی به قسمت داخلی ساختار مشبک تولید شده تزریق می‏شود. سپس، آزمایش‌های فشرده‌سازی برای تجزیه و تحلیل خواص مکانیکی و ظرفیت جذب انرژی ساختار مشبک سه‌بعدی دو ماده انجام شده است. مطالعه عددی غیرخطی، رفتار الاستو -پلاستو-آسیب در آنالیزهای المان محدود که پاسخ غیرخطی ساختار‌های در نظر گرفته شده را دنبال می‌کند، اجرا شده است. این مدل قادر است تفاوت خواص کششی و فشاری مواد را نیز بررسی کند. منحنی نیرو-جابجایی ساختار مشبک تحت بارگذاری فشاری مقایسه شده است. مدل‌ عددی پیش‌بینی قابل قبولی در مورد پاسخ‌های خطی و غیرخطی ساختار مشبک سه‌بعدی پیشنهادی نشان می‌دهند. نتایج نشان می‌دهد که نه تنها استفاده از ساختارهای مشبک دو ماده‏ای باعث جذب انرژی بیشتر و بهبود خواص مکانیکی می‌شود، بلکه ترکیب منطقی دو ماده باعث می‌شود ساختار مشبک سه بعدی دو ماده با جذب انرژی و سفتی بهینه در مقایسه با ساختارهای مشبک معمولی با یک ماده واحد داشته باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental and numerical investigation of the energy absorption capability of the bi-material lattice structure

نویسندگان [English]

  • Hussain Gharehbaghi 1
  • amin farrokhabadi 2

1 Department of Mechanical Engineering. Tarbiat Modares University.

2 Department of Mechanical Engineering, Tarbiat Modares University.

چکیده [English]

This paper investigates the mechanical performance and energy absorption capacity of bi-material three-dimensional lattice structures via experimental and numerical approaches. At first, fused deposition modeling was used to manufacture the outer part of the proposed three-dimensional lattice structure with TPU material. Using a syringe, epoxy resin is injected into the inner part of the manufactured lattice structure. Then, quasi-static compression tests were conducted to analyze the mechanical properties and energy absorption capacity of the bi-material three-dimensional lattice structure. As the nonlinear numerical study, the elasto-plasto-damage behavior was implemented in finite element analyses which track the nonlinear response of considered structures. This model is capable to investigate the differences in tensile and compressive properties of the materials as well. The comparison of the load-displacement curve of structures under compressive loading has been compared. The numerical models exhibit an acceptable prediction about the linear and nonlinear responses of the proposed three-dimensional lattice structure. The results reveal that not only does the use of hybrid structures provide more energy absorption and improve mechanical properties, but also the rational combination of two materials makes the bi-material three-dimensional lattice structure with the optimum energy absorption and stiffness, in comparison to those usual lattice structures with a single material.

کلیدواژه‌ها [English]

  • Additive manufacturing
  • Elasto-plasto-damage
  • Nonlinear FEM
[1]  Farrokhabadi, A., Veisi, H., Gharehbaghi, H., Montesano, J., Behravesh, A.H. and Hedayati, S.K., “Investigation of the energy absorption capacity of foam-filled 3D-printed glass fiber reinforced thermoplastic auxetic honeycomb structures,” Mechanics of Advanced Materials and Structures, vol. 0, no. 0, pp. 1–12, 2022.
[2]  Mahbod, M. and Asgari, M., “Multiobjective optimization of a newly developed additively manufactured functionally graded anisotropic porous lattice structure,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 234, no. 11, pp. 2233–2255, 2020.
[3]  Mahbod, M., Asgari, M. and Mittelstedt, C., “Architected functionally graded porous lattice structures for optimized elastic-plastic behavior,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 234, no. 8, pp. 1099–1116, 2020.
[4]  Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M. and Zadpoor, A.A., “Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells,” Applied Mathematical Modelling, vol. 46, pp. 408–422, 2017.
[5]  Hedayati, S.K., Behravesh, A.H., Hasannia, S., Kordi, O., Pourghaumi, M., Saed, A.B. and et al., “Additive manufacture of PCL/nHA scaffolds reinforced with biodegradable continuous Fibers: Mechanical Properties, in-vitro degradation Profile, and cell study,” European Polymer Journal, vol. 162, p. 110876, 2022.
[6]  Veisi, H. and Farrokhabadi, A., “Investigation of the equivalent material properties and failure stress of the re-entrant composite lattice structures using an analytical model,” Composite Structures, vol. 257, p. 113161, 2021.
[7]  Zadpoor, A.A. and Hedayati, R., “Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials,” Journal of Biomedical Materials Research - Part A, vol. 104, no. 12, pp. 3164–3174, 2016.
[8]  Mahbod, M. and Asgari, M., “Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models,” International Journal of Mechanical Sciences, vol. 155, pp. 248–266, 2019.
[9]  Farrokhabadi, A., Ashrafian, M.M., Gharehbaghi, H. and Nazari, R., “Evaluation of the equivalent mechanical properties in a novel composite cruciform honeycomb using analytical and numerical methods,” Composite Structures, vol. 275, p. 114410, 2021.
[10] Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M. and Hosseini-Toudeshky, H., “Comparison of elastic properties of open-cell metallic biomaterials with different unit cell types,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 106, no. 1, pp. 386–398, 2018..
[11] Galehdari, S.A., Kadkhodayan, M. and Hadidi-Moud, S., “Low velocity impact and quasi-static in-plane loading on a graded honeycomb structure; experimental, analytical and numerical study,” Aerospace Science and Technology, vol. 47, pp. 425–433, 2015.
[12] Deng, D. and Murakawa, H., “Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements,” Computational Materials Science, vol. 37, no. 3, pp. 269–277, 2006.
[13] Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufman, M.J. and et al., “Bone structure and formation: A new perspective,” Materials Science and Engineering R: Reports, vol. 58, no. 3–5, pp. 77–116, 2007.
[14] Taghipoor, H. and Malekzade, K., "Experimental and numerical study of Energy Absorption in foam filled Trapezoidal Compound core sandwich panels subjected to quasi-static loading", In Persian, Journal of Science and Technology of Composites, vol. 5, no. 4, pp. 565–574, 2019.
[15] Parvaresh, M., Ahmadi, H. and Liaghat, G.H., "Investigation on the Energy Absorption of Elastomeric Auxetic Structures in Quasi-static and Impact Loading", In Persian, Journal of Science and Technology of Composites, vol. 8, no. 1, pp. 1431–1442, 2021.
[16] Farrokhabadi, A., Ashrafian, M.M. and Fotouhi, M., “Design and characterization of an orthotropic accordion cellular honeycomb as one-dimensional morphing structures with enhanced properties,” Journal of Sandwich Structures & Materials, vol. 0, no. 0, p. 109963622110702, 2022.
[17] Barbero, E.J., Finite element analysis of composite materials using AbaqusTM. CRC press, 2013.
[18] Deymier, A.C., An, Y., Boyle, J.J., Schwartz, A.G., Birman, V., Genin, G.M. and et al.  “Micro-mechanical properties of the tendon-to-bone attachment,” Acta Biomaterialia, vol. 56, no. January, pp. 25–35, 2017.
[19] Molino, G., Montalbano, G., Pontremoli, C., Fiorilli, S. and Vitale-Brovarone, C., “Imaging techniques for the assessment of the bone osteoporosis-induced variations with particular focus on micro-ct potential,” Applied Sciences (Switzerland), vol. 10, no. 24, pp. 1–27, 2020.
[20] Sadeghzade, M., Gharehbaghi, H. and Farrokhabadi, A., “Experimental and Analytical Studies of Mechanical Properties of Additively Manufactured Lattice Structure Based on Octagonal Bipyramid Cubic Unit Cell,” Additive Manufacturing, vol. 48, no. PB, p. 102403, 2021.
[21] Gharehbaghi, H., Sadeghzade, M. and Farrokhabadi, A., “Introducing the new lattice structure based on the representative element double octagonal bipyramid,” Aerospace Science and Technology, vol. 121, p. 107383, 2022.