نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشگاه آزاد اسالمی واحد تهران جنوب، تهران.

2 استادیار، مهندسی مکانیک، دانشگاه آزاد اسالمی واحد تهران جنوب، تهران.

3 دانشیار، مهندسی مکانیک، دانشگاه آزاد اسالمی واحد تهران جنوب، تهران.

10.22068/jstc.2022.555294.1790

چکیده

در این مقاله هدف شناسایی مکانیزم‌های آسیب و میزان جذب انرژی کامپوزیت‌های ساندویچی تحت آزمون ضربه شارپی است. نمونه‌ها از هسته‌ی فوم PVC و مجموعه‌ای از دو پوسته‌غیرهیبریدی متشکل از اینگرا و کربن و یک پوسته هیبریدی اینگرا/کربن ساخته شده‌اند. تمامی پوسته‌های کامپوزیتی متشکل از 4 لایه هستند که با رزین اپوکسی اصلاح شده توسط نانوالیاف‌کربن تقویت شده‌اند و در بالا و پایین فوم PVC قرار گرفته اند. نانوالیاف‌کربن با نسبت‌های وزنی از 0 تا 0.5 درصد وزنی به رزین اپوکسی اضافه شدند. نمونه‌ها بر اساس استاندارد ASTM D256 تهیه شدند و تحت بارگذاری قرار گرفتند. پس از آزمون ضربه شارپی، از نمونه‌ها برای ارزیابی سطح مکانیزم‌های آسیب به وجود آمده عکس‌برداری شد. نتایج نشان داد که نمونه های تقویت شده با نانوالیاف‌کربن جذب انرژی بالاتری نسبت به نمونه های بدون نانوالیاف‌کربن دارند. در این میان، افزایش جذب انرژی در کامپوزیت‌های ساندویچی اینگرا با افزودن درصد نانوالیاف‌کربن نسبت به دیگر نمونه‌ها قابل ملاحظه است. به طوریکه نمونه‌ی اینگرا با 0.5 درصد نانوالیاف‌کربن بالاترین جذب انرژی را دارد. این قضیه لزوما برای نمونه‌های دیگر صادق نبود و تغییر درصد نانوالیاف کربن نتیجه قابل توجهی بر نمونه‌های کربنی و هیبریدی نداشت. در مقایسه‌ی آسیب‌های خرابی مشاهده شده، جدایش بین‌لایه‌ای، برای نمونه هیبریدی شدیدتر بود و این نشان از این دارد که الیاف اینگرا و کربن ترکیب مناسبی برای بارگذاری ضربه نمی‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental investigation of charpy impact in energy absorption of hybrid and non-hybrid sandwich structures reinforced with carbon nanofiber

نویسندگان [English]

  • Rezvan Hosseini 1
  • Mahdi Yarmohammad Tooski 2
  • Ahmad Reza khorshidvand 3
  • Seyed Mehdi Khorsandijou 2

1 Department of Mechanical Engineering, Islamic Azad University South Tehran, Tehran, Iran.

2 Department of Mechanical Department of Mechanical Engineering, Islamic Azad University South Tehran, Tehran, Iran.

3 Department of Mechanical Engineering, Islamic Azad University South Tehran, Tehran, Iran.

چکیده [English]

This paper aims to identify damage mechanism and the amount of energy absorption of sandwich composites under the Charpy impact test. Each of the samples are made of a core with PVC foam and faces with different materials consisting of innegra, carbon, and hybrid innegra/carbon. All the faces comprises of 4 layers reinforced with modified epoxy resin by carbon nanofiber (CNF) which are located on the top and the bottom of the core. CNFs are added to the epoxy resin with a weight ratio varying from 0 to 0.5 percent. The samples were prepared based on ASTM D256 standards and then loaded. After the Charpy impact test, the samples were photographed to evaluate the induced damage severity. The results showed all samples reinforced with CNF have higher energy absorption than the virgin ones. The increase in energy absorption of CNF added innegra sandwich composites is significant in comparison to the other samples where the innegra sandwich composite with 0.5 percent CNF shows the highest energy absorption. This was not same for the other samples and CNF adding didn’t affect energy absorption considerably. Comparing the induced damage mechanism showed that delamination was intensive for the hybrid samples, showing that innegra and carbon are not an appropriate combination to stand impact loading

کلیدواژه‌ها [English]

  • Charpy impact Test
  • Sandwich composite
  • Innegra synthetic fiber
  • Carbon nanofiber
 [1] Fotouhi, M., Saghafi, H., Brugo, T., Minak, G., Fragassa, C., Zucchelli, A. and  Ahmadi, M., “Effect of Pvdf Nanofibers on the Fracture Behavior of Composite Laminates for High-Speed Woodworking Machines“ Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 231, No. 1, pp. 31-43, 2017.
[2]  Lee, S.-E., Jeong, E., Lee, M. Y., Lee, M.-K. and  Lee, Y.-S., “Improvement of the Mechanical and Thermal Properties of Polyethersulfone-Modified Epoxy Composites“ Journal of Industrial and Engineering Chemistry, Vol. 33, pp. 73-79, 2016.
[3]  Rajasekaran, R., Alagar, M. and  Chozhan, C. K., “Effect of Polyethersulfone and N, N′-Bismaleimido-4, 4′-Diphenyl Methane on the Mechanical and Thermal Properties of Epoxy Systems“ Express Polym. Lett, Vol. 2, pp. 339-348, 2008.
[4]  Ingram, J., Zhou, Y., Jeelani, S., Lacy, T. and  Horstemeyer, M. F., “Effect of Strain Rate on Tensile Behavior of Polypropylene and Carbon Nanofiber Filled Polypropylene“ Materials Science and Engineering: A, Vol. 489, No. 1-2, pp. 99-106, 2008.
[5]  Akangah, P., Lingaiah, S. and  Shivakumar, K., “Effect of Nylon-66 Nano-Fiber Interleaving on Impact Damage Resistance of Epoxy/Carbon Fiber Composite Laminates“ Composite Structures, Vol. 92, No. 6, pp. 1432-1439, 2010.
[6]  Li, G., Li, P., Yu, Y., Jia, X., Zhang, S., Yang, X. and  Ryu, S., “Novel Carbon Fiber/Epoxy Composite Toughened by Electrospun Polysulfone Nanofibers“ Materials Letters, Vol. 62, No. 3, pp. 511-514, 2008.
[7]  Li, G., Li, P., Zhang, C., Yu, Y., Liu, H., Zhang, S., Jia, X., Yang, X., Xue, Z. and  Ryu, S., “Inhomogeneous Toughening of Carbon Fiber/Epoxy Composite Using Electrospun Polysulfone Nanofibrous Membranes by in Situ Phase Separation“ Composites Science and Technology, Vol. 68, No. 3-4, pp. 987-994, 2008.
[8]  Robinette, E. J., “Toughening Vinyl Ester Matrix Composites by Tailoring Nanoscale and Mesoscale Interfaces“,  Drexel University, 2006.
[9]  Zhang, J., Lin, T. and  Wang, X., “Electrospun Nanofibre Toughened Carbon/Epoxy Composites: Effects of Polyetherketone Cardo (Pek-C) Nanofibre Diameter and Interlayer Thickness“ Composites science and technology, Vol. 70, No. 11, pp. 1660-1666, 2010.
[10] Emamieh, H. R., Yarmohammad Tooski, M., Jjabbari, M. and  Khorshidvand, A. R., “An Experimental Investigation of Impact Resistance of Sandwich Panels Reinforced by Nano-Silica and Nano-Clay“ Journal of Science and Technology of Composites, Vol. 8, No. 2, pp. 1573-1582, 2021.
[11] Sun, L., Warren, G., O’reilly, J., Everett, W., Lee, S., Davis, D., Lagoudas, D. and  Sue, H.-J., “Mechanical Properties of Surface-Functionalized Swcnt/Epoxy Composites“ Carbon, Vol. 46, No. 2, pp. 320-328, 2008.
[12] Wei, J., Vo, T. and  Inam, F., “Epoxy/Graphene Nanocomposites–Processing and Properties: A Review“ Rsc Advances, Vol. 5, No. 90, pp. 73510-73524, 2015.
[13] Yu, N., Zhang, Z. and  He, S., “Fracture Toughness and Fatigue Life of Mwcnt/Epoxy Composites“ Materials Science and Engineering: A, Vol. 494, No. 1-2, pp. 380-384, 2008.
[14] Taghipoor, H., Fereidoon, A., Ghasemi-Ghalebahman, A. and  Mirzaei, J., “Experimental Assessment of Mechanical Behavior of Basalt/Graphene/Pp-G-Ma-Reinforced Polymer Nanocomposites by Response Surface Methodology“ Polymer Bulletin, pp. 1-23, 2022.
[15] Wang, D. H., Sihn, S., Roy, A. K., Baek, J.-B. and  Tan, L.-S., “Nanocomposites Based on Vapor-Grown Carbon Nanofibers and an Epoxy: Functionalization, Preparation and Characterization“ European polymer journal, Vol. 46, No. 7, pp. 1404-1416, 2010.
[16] Zhou, Y., Pervin, F., Jeelani, S. and  Mallick, P., “Improvement in Mechanical Properties of Carbon Fabric–Epoxy Composite Using Carbon Nanofibers“ Journal of materials processing technology, Vol. 198, No. 1-3, pp. 445-453, 2008.
[17] Shokrieh, M. M., Zeinedini, A. and  Ghoreishi, S. M., “Effects of Adding Multiwall Carbon Nanotubes on Mechanical Properties of Epoxy Resin and Glass/Epoxy Laminated Composites“ Modares Mechanical Engineering, Vol. 15, No. 9, pp. 125-133, 2015.
[18] Kamar, N. T., Hossain, M. M., Khomenko, A., Haq, M., Drzal, L. T. and  Loos, A., “Interlaminar Reinforcement of Glass Fiber/Epoxy Composites with Graphene Nanoplatelets Part a Applied Science and Manufacturing“, 2015.
[19] Ashenai Ghasemi, F., Saberian, M. H., Ghasemi, I. and  Daneshpayeh, S., “Experimental Investigation on Mechanical Properties of Hybrid Nano-Composite Based on Epoxy/Graphene Nano-Platelets/Carboxylated Acrylonitrile Butadiene Rubber“ Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 395-402, 2018.
[20] Hasan, M. M., Zhou, Y. and  Jeelani, S., “Thermal and Tensile Properties of Aligned Carbon Nanofiber Reinforced Polypropylene“ Materials letters, Vol. 61, No. 4-5, pp. 1134-1136, 2007.
[21] Odagiri, N., Kishi, H. and  Yamashita, M., “Development of Torayca Prepreg P2302 Carbon Fiber Reinforced Plastic for Aircraft Primary Structural Materials“ Advanced Composite Materials, Vol. 5, No. 3, pp. 249-254, 1996.
[22] Zhou, Y., Pervin, F., Lewis, L. and  Jeelani, S., “Experimental Study on the Thermal and Mechanical Properties of Multi-Walled Carbon Nanotube-Reinforced Epoxy“ Materials Science and Engineering: A, Vol. 452, pp. 657-664, 2007.
[23] Taghipoor, H. and  Sefidi, M., “Energy Absorption of Foam-Filled Corrugated Core Sandwich Panels under Quasi-Static Loading“ Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, pp. 14644207221110483, 2022.
[24] Taghipoor, H. and  Sadeghian, A., “Experimental Investigation of Single and Hybrid-Fiber Reinforced Concrete under Drop Weight Test“ in Proceeding of  Elsevier, pp. 1073-1083.
[25] Mirzaei, J. and  Taghipoor, H., “Experimental Investigation of Glass/Hemp Hybrid Composite Plates under Low-Velocity Impact Loading“ Journal of Aeronautical Engineering, 2022.
[26] Taghipoor, H. and  Eyvazian, A., “Quasi-Static Axial Crush Response and Energy Absorption of Composite Wrapped Metallic Thin-Walled Tube“ Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44, No. 4, pp. 1-19, 2022.
[27] Taghipoor, H. and  Noori, M. D., “Experimental Investigation of Energy Absorption in Foam Filled Sandwich Beams with Expanded Metal Sheet as Core under Quasi-Static Bending“ Modares Mechanical Engineering, Vol. 18, No. 3, pp. 126-134, 2018.
[28] Ávila, A. F., Carvalho, M. G. R., Dias, E. C. and  da Cruz, D. T., “Nano-Structured Sandwich Composites Response to Low-Velocity Impact“ Composite Structures, Vol. 92, No. 3, pp. 745-751, 2010.
[29] Bidi, A., Liaghat, G. and  Rahimi, G., “Effect of Nano Clay Addition to Energy Absorption Capacity of Steel-Polyurea Bi-Layer“ Journal of Science and Technology of Composites, Vol. 3, No. 2, pp. 157-164, 2016.
[30] Hufenbach, W., Ibraim, F. M., Langkamp, A., Böhm, R. and  Hornig, A., “Charpy Impact Tests on Composite Structures–an Experimental and Numerical Investigation“ Composites Science and Technology, Vol. 68, No. 12, pp. 2391-2400, 2008.
[31] Standard, A., “D265,‘‘Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics’’“ West Conshohocken (PA): ASTM International, 2010.
[32] Shokrieh, M., Ghoreishi, S. and  Esmkhani, M., “Toughening Mechanisms of Nanoparticle-Reinforced Polymers“  in: Toughening Mechanisms in Composite Materials, Eds., pp. 295-320: Elsevier, 2015.
[33] Zhou, Y., Jeelani, S. and  Lacy, T., “Experimental Study on the Mechanical Behavior of Carbon/Epoxy Composites with a Carbon Nanofiber-Modified Matrix“ Journal of Composite Materials, Vol. 48, No. 29, pp. 3659-3672, 2014.
[34] Alghamdi, A., “Collapsible Impact Energy Absorbers: An Overview“ Thin-walled structures, Vol. 39, No. 2, pp. 189-213, 2001.
[35] Sadighi, M. and  Dariushi, S., “An Experimental Study of the Fibre Orientation and Laminate Sequencing Effects on Mechanical Properties of Glare“ Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 222, No. 7, pp. 1015-1024, 2008.