نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

چکیده

در دهه‌های اخیر، کامپوزیت‌ها به دلیل نسبت استحکام به وزن بالا کاربردهای گسترده‌ای در صنایع مختلفی از جمله هوافضا و خودروسازی دارند. جعبه تصادف‌ها به عنوان جاذب انرژی برای جلوگیری از صدمه به سرنشینان خودرو، بین سپر و شاسی قرار می‌گیرند. به علت اهمیت حفظ جان سرنشینان، کاهش نیروی بیشینه جعبه تصادف پس از وقوع برخورد بسیار حائز اهمیت است. به طور کلی، یک جعبه تصادف ایده‌آل دارای جذب انرژی مخصوص بالاتر و نیروی بیشینه‌ی پایین‌تر است. بنابراین دست‌یابی به ابزار طراحی پیش‌بینی کننده‌ای که بتواند رفتار سازه‌های جدارنازک کامپوزیتی را تحت ضربه و یا بارگذاری فشاری پیش‌بینی کند، از اهمیت ویژه‌ای برخوردار است. در این پژوهش، در ابتدا به منظور بررسی صحت نتایج حاصل از شبیه‌سازی عددی در نرم‌افزار آباکوس، یک جعبه تصادف کامپوزیتی مطابق تحقیق تجربی موجود، شبیه‌سازی شده و منحنی نیرو-جابجایی حاصل از نتایج تحلیل عددی با نتایج تجربی موجود مقایسه شد. پس از اطمینان از صحت روش حل، به منظور ارائه راهکار کلی برای کاهش نیروی بیشینه جعبه تصادف‌ها، یک جعبه تصادف کامپوزیتی مدل‌سازی شد و تأثیرات سه نوع محرک لبه بر رفتار تصادم آن مورد ارزیابی قرار گرفت. نتایج نشان داد که وجود محرک لبه در جعبه تصادف‌های شبیه‌سازی شده تأثیر مثبتی در عملکرد آن‌ها داشته است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of different triggering on crashworthiness of composite crash box

نویسندگان [English]

  • Mahsa Jahani 1
  • Hamid Beheshti 2
  • Mohammad i Heidari-Raran 3

1 Department of Mechanical Engineering, University of Isfahan, Isfahan, Iran.

2 Department of Mechanical Engineering, University of Isfahan, Isfahan, Iran.

3 Department of Mechanical Engineering, University of Isfahan, Isfahan, Iran

چکیده [English]

In recent decades, composite materials have wide range of applications in different industries such as aerospace and automotive due to their high strength to weight ratio. Crash box uses as energy absorber in automobiles between bumper and chassis to prevent damage to passengers. Due to high importance of passenger’s safety, reduction of maximum load of crash box after crash is very important. In general, an ideal crash box has higher specific energy (SEA) and lower maximum load. Therefore, it is very important to have a predictive design tool to be able to simulate the response of thin-walled structures under impact or crash loading. In this study, at first to validate the numerical simulation, a composite crash box is simulated in Abaqus/Explicit, according to available experimental research and extracted force-displacement curve from numerical simulation is compared with available experimental results. After ensuring the solution method, in order to provide an overall strategy to reduce the amount of the maximum load of crash boxes, a composite crash box is modelled and the effects of three different triggers on collapse behavior, especially on the maximum load is evaluated. Results show that presence of trigger in simulated crash boxes has a positive effects on their performance.

کلیدواژه‌ها [English]

  • Crash box
  • Energy absorber
  • Composite
  • Edge trigger
[1]  www.mehrnews.com/news/3582776, 2015.
[2] www.who.int/violence_injury‌prevention/road_safety_status /2015.
[3]  Bisagni, C., “Experimental Investigation of the Collapse Modes and Energy Absorption Characteristics of Composite Tubesˮ, International Journal of Crashworthiness, Vol. 14, No. 4, pp. 365-378, 2009.
[4]  Obradovic, J. Boria, S., Belingardi, G., “Lightweight Design and Crash Analysis of Composite Frontal Impact Energy Absorbing Structuresˮ, Composite Structures, Vol. 94, No. 2, pp. 423-430, 2012.
[5]  Teng, J. G. Hu, Y. M., “Behaviour of FRP-Jacketed Circular Steel Tubes and Cylindrical Shells Under Axial Compressionˮ, Construction and Building Materials, Vol. 21, No. 4, pp. 827-838, 2007.
[6]  Song, H.-W. Wan, Z.-M., Xie, Z.-M., Du, X.-W., “Axial Impact Behavior and Energy Absorption Efficiency of Composite Wrapped Metal Tubesˮ, International Journal of Impact Engineering, Vol. 24, No. 4, pp. 385-401, 2000.
[7]  Haedir, J. Bambach, M., Zhao, X., Grzebieta, R., “Bending Strength of CFRP-Strengthened Circular Hollow Steel Sectionsˮ, in Proceeding of, Florida International University, pp. 701-704, 2006.
[8]  Haedir, J. Bambach, M., Zhao, X., Grzebieta, R., “Behaviour of Thin-Walled CHS Beams Reinforced by CFRP Sheetsˮ, in Proceeding of, Taylor and Francis/Balkema, pp. 701-706, 2007.
[9]  Doi, H., “Deformation Capacity of Circular Tubular Beam-Columns Reinforced with CFRP Subjected to monotonic loadingˮ, Journal of Constructional Steel, Vol. 11, pp. 431-8, 2003.
[10]         Jiao, H. Zhao, X. L., “CFRP Strengthened Butt-Welded Very High Strength (VHS) Circular Steel Tubesˮ, Thin-Walled Structures, Vol. 42, No. 7, pp. 963-978, 2004.
[11]         Zhao, Y. Gu, W. Xu, J. Zhang, H., “The Strength of Concrete Filled CFRP-Steel Tubes Under Axial Compressionˮ, The 15th International Offshore and Polar Engineering Conference, pp. 19-24, 2005.
[12]         Xiao, Y. He, W. Choi, K.-k., “Confined Concrete-Filled Tubular Columnsˮ, Journal of Structural Engineering, Vol. 131, No. 3, pp. 488-497, 2005.
[13]         Zhao, X.-L. Fernando, D. Al-Mahaidi, R., “CFRP Strengthened RHS Subjected to Transverse End Bearing Forceˮ, Engineering Structures, Vol. 28, No. 11, pp. 1555-1565, 2006.
[14]         Fernando, N. Teng, J. Yu, T. Zhao, X., “Finite Element Modelling of CFRP Strengthened Rectangular Steel Tubes Subjected to End Bearing Loadsˮ, in Proceeding of, Asia-Pacific conference of FRP in structures, pp. 943-950, 2007.
[15]         Bambach, M. Jama, H. Elchalakani, M., “Axial Capacity and Design of Thin-Walled Steel SHS Strengthened with CFRPˮ, Thin-Walled Structures, Vol. 47, No. 10, pp. 1112-1121, 2009.
[16]         Abosbaia, A. Mahdi, E. Hamouda, A. Sahari, B., “Quasi-Static Axial Crushing of Segmented and Non-Segmented Composite Tubesˮ, Composite Structures, Vol. 60, No. 3, pp. 327-343, 2003.
[17]         Hou, T. Pearce, G. Prusty, B. Kelly, D. Thomson, R., “Pressurised Composite Tubes as Variable Load Energy Absorbersˮ, Composite Structures, Vol. 120, pp. 346-357, 2015.
[18]         Priem, C. Othman, R. Rozycki, P. Guillon, D., “Experimental Investigation of the Crash Energy Absorption of 2.5 D-Braided Thermoplastic Composite Tubesˮ, Composite structures, Vol. 116, pp. 814-826, 2014.
[19]         Kim, J.-S. Yoon, H.-J. Shin, K.-B., “A Study on Crushing Behaviors of Composite Circular Tubes with Different Reinforcing Fibersˮ, International Journal of Impact Engineering, Vol. 38, No. 4, pp. 198-207, 2011.
[20]         Ataollahi, S. Taher, S. T., Eshkoor, R. A. Ariffin, A. K. Azhari, C. H., “Energy Absorption and Failure Response of Silk/Epoxy Composite Square Tubes: Experimentalˮ, Composites Part B: Engineering, Vol. 43, No. 2, pp. 542-548, 2012.
[21]         Othman, A. Abdullah, S. Ariffin, A. Mohamed, N., “Investigating the Quasi-Static Axial Crushing Behavior of Polymeric Foam-Filled Composite Pultrusion Square Tubesˮ, Materials & Design, Vol. 63, pp. 446-459, 2014.
[22]         Eshkoor, R. A. Oshkovr, S. A. Sulong, A. B. Zulkifli, R. Ariffin, A. K. Azhari, C. H., “Comparative Research on the Crashworthiness Characteristics of Woven Natural Silk/Epoxy Composite Tubesˮ, Materials & Design, Vol. 47, pp. 248-257, 2013.
[23]         Eshkoor, R. Ude, A. Oshkovr, S. Sulong, A. B. Zulkifli, R. Ariffin, A. Azhari, C., “Failure Mechanism of Woven Natural Silk/Epoxy Rectangular Composite Tubes Under Axial Quasi-Static Crushing Test Using Trigger Mechanismˮ, International Journal of Impact Engineering, Vol. 64, pp. 53-61, 2014.
[24]         Elgalai, A. Mahdi, E. Hamouda, A. Sahari, B., “Crushing Response of Composite Corrugated Tubes to Quasi-Static Axial Loadingˮ, Composite Structures, Vol. 66, No. 1, pp. 665-671, 2004.
[25]         Mahdi, E. Sebaey, T., “Crushing Behavior of Hybrid Hexagonal/Octagonal Cellular Composite System: Aramid/Carbon Hybrid Compositeˮ, Materials & Design, Vol. 63, pp. 6-13, 2014.
[26]         Mahdi, E. Hamouda, A., “Energy Absorption Capability of Composite Hexagonal Ring Systemsˮ, Materials & Design, Vol. 34, pp. 201-210, 2012.
[27]         Mahdi, E. Hamouda, A. Sahari, B. Khalid, Y., “Experimental Quasi-Static Axial Crushing of Cone–Tube–Cone Composite Systemˮ, Composites Part B: Engineering, Vol. 34, No. 3, pp. 285-302, 2003.
[28]         Elgalai, A. Hamouda, A. Mahdi, E. Sahari, B., “Energy Absorption Capabilities of Woven Roving Glass/Epoxy Composite Tubes: Effect of Tube Lengthˮ, Strength, fracture and complexity, Vol. 3, No. 1, pp. 15-24, 2005.
[29]         Mamalis, A. Manolakos, D. Ioannidis, M. Papapostolou, D., “Crashworthy Characteristics of Axially Statically Compressed Thin-Walled Square CFRP Composite Tubes: Experimentalˮ, Composite Structures, Vol. 63, No. 3, pp. 347-360, 2004.
[30]         Chiu, L. N. Falzon, B. G. Boman, R. Chen, B. Yan, W., “Finite Element Modelling of Composite Structures Under Crushing Loadˮ, Composite Structures, Vol. 131, pp. 215-228, 2015.
[31]         Sameer, J. O. Zaroog, O. S. Samer, F., “The effects of Trigger Mechanism on the Energy Absorption of Thin-Walled Rectangular Steel Tubesˮ, The 3rd National Conference, Universiti Tenaga Nasional, 2015.
[32]         Huang, J. Wang, X., “On a New Crush Trigger for Energy Absorption of Composite Tubesˮ, Internationial Journal of Crashworthiness, Vol. 15, pp. 625-634, 2010.
[33]         Kakogiannis, D. Yuen, S. C. K. Palanivelu, S. Hemelrijck, D. V. Paepegem, W. V. Wastiels, J. Vantomme, J. Nurick, G. N., “Response of Pultruded Composite Tubes Subjected to Dynamic and Impulsive Axial Loadingˮ, Composites: Part B, Vol. 55, pp. 537-547, 2013.
[34]         Chun, P. H., “Numerical and Experimental Crashworthiness Studies of Foam-filled Frustaˮ, M.Sc. Thesis, University of Toronto, 2013.
[35]         Abaqus CAE 6.14 documentation user's manual.
[36]         Shokrieh, M. M. Ghajar, M. Salamattalab, M. Madoliat, R., “Progressive Damage Modelling of Laminated Composites by Considering Simultaneous Effects of Interlaminar and Intralaminar Damage Mechanics”, Journal of Sciemce and Technology of Composites, Vol. 2, pp. 1-8, 2015. (in Persian)
[37]         Reyes, A. Hopperstad, O. S. Langseth, M., “Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study”, Advanced Engineering Materials, Vol. 2, pp. 223-227, 2000.
[38]         Shariati, M. Allahbakhsh, H. R. Saemi, J. Sedighi, M., “Optimization of foam filled spot-welded column for the crashworthiness design”, Mechanika, Vol. 3, pp. 10-16, 2010.
[39] Mohammadiha, O. Beheshti, H., “Optimization of Functionally Graded Foam-Filled Conical Tubes Under Axial Impact Loadingˮ, Journal of Mechanical Science and Technology, Vol. 28, pp. 1741-52, 2013.
[40]         Boria, S. Obradovic, J. Belingardi, G., “Experimental and Numerical Investigations of the Impact Behaviour of Composite Frontal Crash Structuresˮ, Composites Part B: Engineering, Vol. 79, pp. 20-27, 2015.
[41] Langseth, M. Hopperstad, O., “Static And Dynamic Axial Crushing Of Square Thin-Walled Aluminium Extrusions”, International Journal of Impact Engineering, Vol. 18, pp. 949-68, 1996.