نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

3 استاد، مهندسی پلیمر، پژوهشگاه پلیمر و پتروشیمی ایران، تهران ، ایران

4 دانشجوی دکترا، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

چکیده

در این تحقیق، خواص مکانیکی و حرارتی نانوکامپوزیت‌هایی بر پایه ماتریسی از دو فاز پلیمری پلی‌پروپیلن و اتیلن پروپیلن دی‌ان مونومر (EPDM)، تقویت شده با نانوصفحات گرافن و الیاف شیشه بررسی شده است. ترکیبات شامل 0، 1 و 2 درصد وزنی نانوصفحات گرافن و نیز 10، 20 و 30 درصد وزنی الیاف شیشه و 10 و 15 درصد وزنی EPDM می‌باشند که توسط یک مخلوط کن داخلی تهیه شدند. نمونه‌ها برای انجام آزمون‌های مکانیکی توسط یک دستگاه پرس داغ تهیه شدند. آزمون‌های مکانیکی و آنالیز حرارتی برای تعیین استحکام‌های ضربه، کشش، مدول الاستیسیته و دماهای ذوب و بلورینگی ترکیبات انجام شدند. مشاهده شد که با حضور الیاف شیشه استحکام ضربه 46 درصد افزایش یافته و استحکام کششی نسبت به ترکیب پایه پلی‌پروپیلن/EPDM اندکی افزایش می‌یابد. همچنین حضورمقادیر پایین نانوصفحات گرافن، استحکام ضربه را 16 درصد افزایش می‌دهد. این در حالی است حضور مقادیر بالای این میزان، استحکام ضربه و استحکام کششی را می‌کاهد. افزایش ذرات گرافن به طور کلی مدول الاستیک ترکیبات را 13 درصد افزایش می‌دهد. همچنین افزودن EPDM استحکام ضربه را 18 درصد افزایش داده و بر سایر خواص مکانیکی اثر کاهشی می‌گذارد. نتایج حاصل از آنالیز حرارتی نشان می دهد که حضور نانوصفحات گرافن باعث افزایش دمای بلورینگی پلی‌پروپیلن شده ولی بر دمای ذوب آن تاثیری نداشته است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental analysis of graphene nanoparticles and glass fibers effect on mechanical and thermal properties of polypropylene/EPDM based nanocomposites

نویسندگان [English]

  • Meysam Nouri-Niyaraki 1
  • Faramarz Ashenai Ghasemi 2
  • Ismail Ghasemi 3
  • Sajad Daneshpayeh 4

1 of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2 1-Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

3 Materials Science and Engineering, Iran Polymer and Petrochemical Institiute, Tehran, Iran

4 1-Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

چکیده [English]

In this study, mechanical and thermal properties of a two-phase polymeric matrix composite including polypropylene and EPDM, reinforced with glass fibers and graphene nanoplates is investigated. Compounds were containing 0, 1 and 2 wt.% of graphene nanoplates and 10, 20 and 30 wt.% of glass fibers and 10 and 15 wt.%EPDM, which were prepared by an internal mixer. Samples for mechanical testing were obtained by a hot press machine. Mechanical and thermal tests were performed to determine the impact strength, tensile strength, modulus of elasticity and melting and crystallization temperature of compounds. It was observed that by using of glass fibers, impact strength was increased 46% and tensile strength and elastic modulus were increased slightly compared to the basic ingredients PP / EPDM. By using of up to 1 wt% of graphene nanoplates, impact strength was increased 16%. The more graphene nanoplates used resulted in a decrease in intensile strength. Adding geraghene nanoplates generally increased elastic modulus up to 13%. Also by adding of EPDM, impact strength of the samples was increased 18% but theirother mechanical peorperties were decreased. Graphene nanoplates also slightly increased the crystallization temperature of samples but their melting temperature have not been affected.

کلیدواژه‌ها [English]

  • Graphene
  • Glass fiber
  • Polypropylene
  • EPDM
  • Mechanical properties
 
[1] Lapcik, L. and Jindrova, P. and Lapcikova, B. and Tamblyn, R. G.. “Effect of the Talc Filler Content on the Mechanical Properties of Polypropylene Composites”, Journal of Applied polymer Science, Vol. 110, No. 5, pp. 2742-2747, 2008.
[2]  An, J. E. Jeon,“Preparation and Properties of Polypropylene Nanocomposites,”  Fibers and Polymers, Vol. 13, No. 4, pp. 507-514, 2012.
[3] Geim, A.K. and Novoselov, K. S., “The rise of graphene”, Nature Materials, Vol. 6, No. 3, pp. 183-191, 2007.
[4] Kim, H. and Abdala, A. A.andMacosko C. W., “Graphene /Polymer Nanocomposites”, Macromolecules, Vol. 43, No. 6, pp. 6515-6530, 2010.
[5] Lee, C.G. and Wei, X.D. And Kysar, J.W. H., “Measurement of the elastic properties and intrinsicstrength of monolayer graphene”, Science, Vol. 321, No. 5887, pp. 385-388, 2008.
[6] El Achaby, M. Arrakhiz, F.E. Vaudreuil,S.B. el Kacem Qaiss, A. Bousmina, M. and  Fassi-Fehri, O.,   “Mechanical, Thermal, and Rheological Properties of Graphene-Based Polypropylene Nanocomposites Prepared by Melt Mixing”. Polymer Composites, Vol. 33, No. 5, pp. 733-744, 2012.
[7] Kalaitzidou, K. Fukushima, H. and Drzal, L.T., “Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites”. Composites Part A: applied science and technology, Vol. 38, No. 7, pp. 1675-1682, 2007.
[8]  Shokrieh, M.M. and Ahmadi Joneidi, V., “Manufacturing and experimental characterization of Graphene/ Polypropylene nanocomposites”, In persian. Modares Mechanical Engineering, Vol. 13, No. 11, pp. 55-63, 2014.
[9] Milani, M.A. González, D. Quijada, R.  Basso, N.R.S. Cerrada, M.L. Azambuja, D.S. and Galland, G.B., “Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: Synthesis, characterization and fundamental properties”, Composites Science and Technology, Vol. 84,No 11, pp.1-7, 2013.
[10] Song, P. Cao, Z. Cai, Y. Zhao, L. Fang, Z. and Fu, S., “Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties”, Polymer, Vol. 52, No. 18, pp. 4001-4010, 2011.
[11] Yuan, B. Bao, C.L. Song, L. Hong, N. Liew, K.M. and Hu,Y., “Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties”,Chemical Engineering Journal, Vol. 237,No 3, pp. 411-420, 2014.
[12]         Rafiee, M.A. and Rafiee, J. W., “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content”,  ACS NANO, Vol. 3, No. 12, pp. 3884-3890, 2009.
[13] Kuilla,T. and Bhadra,S. Y., “Recent advances in graphene based polymer composites”,  Progress in Polymer Science, Vol. 35, No. 11, pp. 1350-1375, 2010.
[14] Balandin, A. A. Ghosh, S. B., “Superior Thermal Conductivity of Single-Layer Graphene”, NANO LETTERS, Vol. 8, No. 3, pp. 902-907, 2008.
 [15]Stockreiter, W. and Kadtl, J., “Glass fiber reinforced polypropylene”, US Pat. 008519044B2, 2013.
[16]Thomson, J., “Influence of fibre length and concentration on the properties of glass fibre- reinforced polypropylene: 4. Impact properties. Composites: Part A. Vol. 28, No. 3, PP: 277-288. 2002.
[17] Thomason, J. L., and M. A. Vlug., “Influence of fiber length and concentration on the properties of glass fiber-reinforced polypropylene: 1”. Tensile and flexural mpdulud. Composites: part A.Vol. 27, No. 6,  PP:477-484, 1996.
[18]Wang, W. and Tang, L., “Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite”, European Polymer Journal, Vol. 39, No. 11, pp. 2129-2134, 2003.
[19] Helson, M. and Ramos, D. M., “Analysis of thermal properties and impact strength of PP/SRT, PP/EPDM and PP/SRT/EPDM mixtures in single screw extruder”, Polymer Testing Journal, Vol. 25, No. 4, pp. 498-503, 2006.
[20] Zare, Y. and Garmabi, H. and Sharif, F., “Optimization of Mechanical Properties of PP/Nanoclay/CaCO3 Ternary Nanocomposite Using Response Surface Methodology”,  Journal of Applied Polymer Science, Vol. 122, No. 5,  pp. 3188-3200, 2011.
[21] Leong, Y. W. and Mohd, Z.A.A., “Mechanical and Thermal Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites”,  Journal of Applied Polymer Science, Vol. 91, No. 5, pp. 3327-3336, 2004.
[22] Lee, S.Y. and Kang, I. A. D., “Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites”, eXPRESS Polymer Letters, Vol. 2, No. 2, pp. 78-87, 2008.
[23] Menbari, S. and Ashenai Ghasemi, F. and Ghasemi, I., “Comparison of mechanical properties of hybrid nanocomposites of Polypropylene/Talc/Graphene with Polypropylene/Graphene”, In Persian.  Modares Mechanical Engineering, Vol. 15, No. 7, pp. 329-335, 2015.
[24] Mohedi, A. H. and Liaghat, Gh. and Pol, M. H. and Afrosian, A., “Experimental study on the effect of nano-silica composite interlaminar fracture toughness third of materials reinforced with glass fibers”, In Persian.  Modares Mechanical Engineering, Vol. 15, No. 3, pp. 290-283, 2015.
[25] Rahman, N. A., A. Hassan, R. Yahya, R. A. Lafia-Araga, and P. R. Hornsby., “Microstructural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites”, Journal of Reinforced Plastics and Composites,  Vol. 31 No. 4, pp. 269-281, 2012.
[26] Hoseini, S. A. and Pol, M. H., “Tensile and flexural properties of composites glass / epoxy reinforced with clay”, In Persian.  Modares Mechanical Engineering, Vol. 14, No. 7, pp. 103-108, 2014.
[27] Chaharmahali, M., Y. Hamzeh, G. Ebrahimi, A. Ashori, and I. Ghasemi., “Effect of nano-graphene on the physic-mechanical properties of bagasse/polypropylene composites”, Polymer Bulletin Vol. 71, No. 2, pp. 337-349. 2014.
[28] Shoartz, S. S. and Godman, S. H., “Thermoplastic”, Translation by Abasian, A. and Manochehri, S. and Nazokdast, H. Behrozan Publicatin Company. 1377.
 [29] Thomason, G. L “Influence of fiber length and concentration on the properties of glass fiber-reinforced polypropylene: 5”, Ingectionmoulded long and short fiber PP. Composites: part A Vol.28, No 3, pp. 1641-1652, 2002.
[30]         Karger-Kosis, J. “Polyoropylene: Structure, Blends and Composites”, Vol. 3: Composites, Amsterdam, Springer, 1995.
[31] Rahman, N. A., A. Hassan, R. Yahya, and R. A. Lafia. “Impact Properties of Glass fiber/polypropylene Composites: The Influence of Fiber Loading, Specimen Geometry and Test Temperature”. Fibers and Polymers Vol. 14, No.11, pp.1877-1885, 2013.
[32]Ashenai Ghasemi, F. and Ghasemi, I. and Daneshpayeh, S., “Mechanical and thermal properties of nanocomposites based on polypropylene/linear low density polyethylene/Titanium dioxide” In Persian.  Modares Mechanical Engineering, Vol. 14, No. 3, pp. 109-103, 2014.