نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه سمنان، سمنان.

2 استادیار، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران.

3 استاد، مهندسی پلیمر، پژوهشگاه پلیمر و پتروشیمی ایران، تهران.

چکیده

در این مقاله، افزودن نانوذرات کاربید سیلیسیم (SiC) به وسیله فرایند اصطکاکی اغتشاشی (FSP) به ترکیب پلی آمید 6 (PA6)/ لاستیک آکریلونیتریل بوتادین (NBR) انجام گرفت. بهینه سازی پارامتر های فرایندی سرعت دورانی پین (ω) و سرعت خطی شولدر (V) و پارامتر موادی مقدار نانوذره کاربید سیلیسیم (S) نیز در جهت دستیابی به پاسخ های مکانیکی بهینه استحکام کششی و تغییر طول در هنگام شکست از روش سطح پاسخ (RSM) استفاده شد. اعتبار سنجی نتایج مکانیکی با استفاده از مقایسه ریزساختار نمونه های نانوکامپوزیتی با میکروسکوپ الکترونی روبشی (SEM) انجام شد. با استفاده از مدل‌ های ریاضی، نتایج نشان داد که استحکام کششی و تغییر طول در هنگام شکست با افزایش سرعت چرخش از 800 rpm به 1200 rpm در مقادیر ثابت کاربید سیلیسیم و سرعت خطی افزایش می‌یابد. بعلاوه، نتایج بهینه سازی اثبات کرد، با انتخاب مقادیر 1200 rpm، 20 mm/min و 2.784 wt.% کاربید سیلیسیم به ترتیب به عنوان پارامتر های فرایندی و موادی، شرایط برای دستیابی به حداکثر مقدار استحکام کششی و تغییر طول در هنگام شکست به طور همزمان فراهم خواهد شد. با استفاده از تصاویر میکروسکوپ الکترونی روبشی مشاهده شد، تغییرات در خواص مکانیکی به تغییر اندازه فاز الاستومری NBR در ریزساختار نمونه های مختلف وابسته است.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental and mathematical investigation of mechanical and microstructural properties of PA6/NBR nanocomposite reinforced with Silicon carbide nanoparticles

نویسندگان [English]

  • Hadi solymani 1
  • Mohammad Reza Nakhaei 2
  • Ghasem Naderi 3

1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

2 Faculty of Mechanics and Energy, Shahid Beheshti University, Tehran, Iran.

3 Faculty of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran.

چکیده [English]

In this paper, the addition of silicon carbide (SiC) nanoparticles to polyamide 6 (PA6) / acrylonitrile-butadiene rubber (NBR) blends was performed by friction stir process. In order to achieve optimal mechanical responses of tensile strength and elongation at break, response surface methodology (RSM) was used to optimize the process parameters of rotational speed (ω), traverse speed (V) and material parameter as silicon carbide nanoparticles (S) content. The validation of the mechanical results was done with compare the microstructure of nanocomposite samples by scanning electron microscopy (SEM). Using mathematical models, the results showed that tensile strength and elongation at break are increased by increasing the rotational speed from 800 rpm to 1200 rpm when the values of silicon carbide content and traverse speed are constant. By selecting the rotational speed of 1200 rpm, traversed speed of 20 mm/min, and 2.784 wt.% of SiC process and material parameters, the maximum tensile strength, and elongation at break can be achieved. Observation of scanning electron microscopy images confirmed that the changes in mechanical properties are related to the changes in the elastomeric phase of NBR.

کلیدواژه‌ها [English]

  • Polyamide 6
  • Acrylonitrile butadiene rubber
  • Silicon carbide
  • Friction stir process
  • Response surface methodology
[1] Arefazar, A. and Shokoohi, Sh., “Polymer blends and alloys” Amirkabir University of Technology Publications, Tehran, Iran, pp. 1-3, 2010.
[2] Kazemi khasrag, E., Siadati, M.H. and Eslami-Farsani, R., “Effect of surface modification of graphene nanoplatelets on the high velocity impact behavior of basalt fibers reinforced polymer-based composites” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 1, pp. 109-116, 2018.
[3] Esmizadeh, E., Irani, A., Naderi, G., Ghoreishy, M.H.R. and Dobious, C., “Effect of carbon nanotube on PA6/ECO composites: morphology development, rheological, and thermal properties” Journal of Applied Polymer Science, Vol. 135, No. 12, pp. 45977, 2018.
[4] Attari, M., Arefazar, A. and Bakhshandeh, G., “Mechanical and thermal properties of toughened PA6/HDPE/SEBs‐G‐Ma/Clay nanocomposite” Polymer Engineering & Science, Vol. 55, No. 1, pp. 29-33, 2015.
[5]  Mohsenzadeh, R. and Shelesh-Nezhad, K., “Experimental studies on the durability of PA6/PP/CaCO3 nanocomposite gears” In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 2, pp. 147-156, 2016.
[6] Nguyen, H.D., Hong, V., Do. V. and Chun, D., “Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fibre-reinforced polyamide-6/polypropylene comosites for lightweight automotive parts” Materials, Vol. 11, No. 3, pp. 429, 2018.
[7] Paran, S.M.R., Naderi, G., Ghoreishy, M.R. and Dubois, C., “Essential work of fracture and failure mechanisms in dynamically vulcanized thermoplastic elastomer nanocomposites based on PA6/NBR/XNBR-grafted HNTs” Engineering Fracture Mechanics, Vol. 200, pp. 251-262, 2018.
[8]  Ghorbankhan, A., Nakhaei, M.R. and Safarpour, P., “Modeling and optimization of mechanical properties of PA6/NBR nanocomposite reinforced with perlite nanoparticles” In Persian, Journal of Science and Technology of Composites, Vol. 8, No. 1, pp. 1421-1430, 2021.
[9] Malek-Mohammadi, H., Majzoobi, G.H. and Payandehpeyman, J., “Experimental and analytical study of the compression behavior of graphene oxide and nano-clay reinforced polycarbonate nanocomposites at low strain rates”, In Persian, Journal of Science and Technology of Composites, Vol. 6, No. 3, pp. 427-434, 2019.
[10] Zinati, R.F., “Experimental evaluation of ultrasonic-assisted friction stir process effect on in situ dispersion of multi-walled carbon nanotubes throughout polyamide 6” The International Journal of Advanced Manufacturing Technology, Vol. 81, No. 9-12, pp. 2087-2098, 2015.
[11] Naderi, G.h., Razavi‐Nouri, M., Taghizadeh, E., Lafleur, P.G. and Dubois, C., “Preparation of thermoplastic elastomer nanocomposites based on polyamide-6/polyepichlorohydrin-co-ethylene oxide” Polymer Engineering & Science, Vol. 51, No. 2, pp. 278-284, 2011.
[12] Paran, S.M.R., Naderi, G. and Ghoreishy, M.R., “Effect of halloysite nanotube on microstructure, rheological and mechanical properties of dynamically vulcanized PA6/NBR thermoplastic vulcanizates” Soft Materials, Vol. 14, No. 3, pp. 127-139, 2016.
[13] Fagundes, E. and Jacobi, M.A., “PA/NBR TPVs: crosslink system and properties” Polímeros, Vol. 22, No. 2, pp. 206-212, 2012.
[14] Nakhaei, M.R., Mohammadi, Sh. and Naderi, G., “Experimental study of microstructure, thermal and mechanical properties of PA6/NBR nanocomposites reinforced with graphene nanoparticle” In Persian, Journal of Science and Technology of Composites, Vol. 6, No. 3, pp. 419-426, 2019.
[15] Nakhaei, M.R. and Ghorbankhan, A., “Experimental investigation on mechanical properties of PA6/NBR/graphene nanocomposite by response surface methodology” In Persian, Karafan Quarterly Scientific Journal, Vol. 18, No. 3, pp. 327-341, 2021.
[16] Ghorbankhan, A. and Nakhaei, M.R., “Microstructure and mechanical properties of polyamid 6/acrylonitrile-butadiene rubber nanocomposites fabricated by friction stir process” In Persian, International Journal of Engineering, Vol. 34, No.10, pp. 2371-2378, 2021.
[17] Ghorbankhan, A., Nakhaei, M.R. and Naderi, G., “Prediction and optimization of mechanical properties of PA6/NBR/graphene nanocomposites fabricated by friction stir processing” Journal of Elastomers & Plastics, Vol. 54, No.1, pp. 67-85, 2022.
[18] Zinati, R.F. and Razfar, M.R., “Finite element simulation and experimental investigation of friction stir processing of polyamide 6” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 229, No.12, pp. 2205-2215, 2015.
[19] Mostafapour, A., Naderi, G. and Nakhaei, M.R., “Effect of process parameters on fracture toughness of PP/EPDM/nanoclay nanocomposite fabricated by novel method of heat assisted friction stir processing” Polymer Composites, Vol. 39, No. 7, pp. 2336-2346, 2018.
[20] Nakhaei, M. R., Mostafapour, A., Dubois, C., Naderi, G., & Reza Ghoreishy, M. H. “Study of morphology and mechanical properties of PP/EPDM/clay nanocomposites prepared using twin‐screw extruder and friction stir process. Polymer composites” 40(8), pp. 3306-3314, 2019.
 [21] Ning, N., Li, S., Wu, H., Tian, H., Yao, P., Hu, Guo-Hua., Tian, M. and Zhang, L, “Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review” Progress in Polymer Science, Vol. 79, pp. 61-97, 2018.