نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد ، گروه مهندسی مکانیک، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه

2 استادیار، گروه مهندسی مکانیک، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه.

چکیده

هدف اصلی این مقاله، تعیین خواص کششی کامپوزیت‌های انعطاف پذیر طبیعی است. برای ساخت این کامپوزیت‌ها، الیاف طبیعی پنبه و لاتکس بترتیب بعنوان تقویت‌کننده و زمینه استفاده شدند. در گام اول، نمونه‌های لاتکس خالص ساخته شدند و تحت بار کششی آزمایش شدند. در مرحله بعد با استفاده از الیاف پنبه، لاتکس تقویت گردید و نمونه‌های ساخته شده تحت بار کششی قرار گرفتند. همچنین، از آلیاژ حافظه‌دار نیتینول برای بهبود خواص کششی لاتکس خالص و کامپوزیت‌های لایه‌ای پنبه/لاتکس استفاده گردید. لذا، یک، دو یا سه سیم نیتینول در نمونه لاتکس خالص و کامپوزیت‌های پنبه/لاتکس بکار برده شدند. نتایج مطالعات تجربی نشان دادند که در حضور الیاف طبیعی پنبه، استحکام لاتکس از 0.93 به 13.51 مگاپاسکال افزایش پیدا کرد. بعلاوه، مشاهده شد که به ازای افزودن یک، دو و سه سیم نیتینول، استحکام کششی نهایی نمونه‌های لاتکس خالص بطور تقریبی بترتیب 70، 500 و 800 درصد افزایش می‌یابد. در حالیکه استحکام کششی نهایی کامپوزیت‌های لایه‌ای به ازای افزودن یک، دو و سه سیم نینینول بطور تقریبی بترتیب 2، 20 و 40 درصد افزایش می‌یابد. همچنین، مقایسه نتایج این تحقیق با مطالعات سایر محققین نشان می‌دهد که با کامپوزیت‌های پنبه/اپوکسی تقویت شده با سیم نیتینول، استحکام کششی این ماده انعطاف‌پذیر از چرم‌های طبیعی و مصنوعی بطور قابل توجهی بزرگتر است.

کلیدواژه‌ها

عنوان مقاله [English]

Tensile properties of flexible latex-based composites reinforced by cotton fibers in the presence of shape memory alloys

نویسندگان [English]

  • Kaveh Bastam 1
  • Afshin Zeinedini 2

1 Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

2 Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran .

چکیده [English]

The main of this paper is to determine the tensile properties of natural flexible composites. In order to fabricate the composites, the cotton fibers and the latex were used as the reinforcement and matrix, respectively. At the first step, the latex samples were manufactured and tested under tensile loading. In the next step, using the cotton fiber the latex was reinforced and then tested under tensile loading. In addition, the NiTi shape memory alloy (SMA) wire was used to improve the tensile properties of the pure latex and the cotton/latex laminated composites. Therefore, one, two or three NiTi wires were used in the pure latex and cotton/epoxy composites samples. The results of experimental study displayed that in the presence of cotton fiber, the ultimate tensile strength of pure latex was increased from 0.93 to 13.51 MPa. Moreover, it was observed that due to adding one, two or three NiTi wires, the ultimate strength of the pure latex was enhanced almost 70, 500 and 800%, respectively. However, the ultimate tensile strength of the cotton/epoxy laminated composites in the presence of one, two and three NiTi wires was increased almost 2, 20 and 40%, respectively. In addition, comparison of the current research results with the other researchers’ investigations manifests that the cotton/epoxy composites reinforced by NiTi wire, the tensile strength of this flexible material is greater than the tensile strength of natural and artificial leathers.

کلیدواژه‌ها [English]

  • Composites
  • Latex
  • Cotton fiber
  • Shape memory alloy
  • tensile properties
[1]  Sanjay, M. R., Arpitha, G. R., Laxmana, Naik L., Gopalakrishna, K., Yogesha, B., “Applications of Natural Fibers and Its Composites: An Overview,” Natural Resources, Vol. 7, No. 3, pp. 108-114, 2016.
[2] Moradi, E., Zeinedini, A., Heidari-shahmaleki, E., “Mechanical properties of laminated composites reinforced by natural fibers of ‎cotton, wool and kenaf under tensile, flexural and shear loadings,” In Persian, Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 99-108, 2019.
[3] John, M. J., Varughese, K. T., Thomas, S., “Green Composites from Natural Fibers and Natural Rubber: Effect of Fiber Ratio on Mechanical and Swelling Characteristics,” Journal of Natural Fibers, Vol 5, pp. 47-60, 2008.
[4] Baley, C., Lan, M., Bourmaud, A., Le Duigou, A., “Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: influence of fibres (flax and jute), matrix and fibre volume fraction,” Materials Today Communications Vol 16, pp. 300-306, 2018.
[5] Portella, H. E., Romanzini, D., Angrizani, C. C., Amico, S. C., Zattera, A. J., “Influence of Stacking Sequence on the Mechanical and Dynamic Mechanical Properties of Cotton/Glass Fiber Reinforced Polyester Composites,” Materials Research, 19(3), 2016.
[6] Jamal, S. K., Hassan, S. A., Wong, K. J., Hanan, U.A., “Mechanical properties of hybrid woven kenaf /recycled glass fiber reinforced polyester composites. Journal of Built Environment,” Technology and Engineering, Vol. 1, pp. 335-344, 2016. 
[7] Ramesh, M., “Kenaf (Hibiscus cannabinus L.) fibre based bio-materials; A review on processing and properties,” Progress in Materials Science, Vol. 78-79, pp. 1-92, 2016.
[8] Heidari-shahmaleki, E., Zeinedini, A., “Application of cotton/epoxy laminated composites to fabricate the uni- and bi-‎directional cosine corrugated cores sandwich panels,” In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 7, pp. 863-872, 2020.
[9] El-Yamany, H. E., El-Salamawy, M. A., El-Assa T. N., “Microstructure and mechanical properties of alkali-activated slag mortar modified with latex.” Construction and Building Materials, Vol. 191, pp. 32-38, 2018.
[10] Yong, K., Mustafa, A., “Natural Rubber-Rubberwood Fiber Laminated Composites with Enhanced Stab Resistance Properties,” J. Rubb. Res., Vol. 17, No. 1, pp. 1–12, 2014.
[11] South, J. T., “Mechanical Properties and Durability of Natural Rubber Compounds and Composites,” PhD thesis, Virginia Polytechnic Institute and State University, 2001.
[12] Ray, D., Bose, N. R., Mohanty, A., Misra, M., “Modification of the dynamic damping behaviour of jute/vinylester composites with latex interlayer,” Composites part b engineering, Vol. 38, No. 3, pp. 380-385, 2007.
[13] Lecce, L., Concilio, A., “Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications,” 1st Edition, Butterworth-Heinemann, Oxford, 2015.
[14] Khalili, S. M., Saeedi, A., “Micromechanics modeling and experimental characterization of shape memory alloy short wires reinforced composites,” In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 1-6, 2015.
[15] Taheri-Behrooz, F., Kiani, A., “Simulation of thermo-mechanical behavior of glass-epoxy composites containing shape memory alloy under static loading,” In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 2, pp. 111-122, 2016.
[16] Osfouri, M., Rahmani, O., Zamani, M., “An Experimental investigation on nitinol shape memory alloy reinforced GLAREs against Charpy low velocity impact,” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 403-414, 2018.
[17] Standard Test Method for Tensile Properties of Plastics, ASTM, D638-03, 2012.
[18] Standard test method for tensile properties of polymer matrix composite materials, ASTM, D3039/D M 3039, 2008.
[19] Khazaie, M., Kazemi Nasrabadi, M., “Tensile strength of reinforced carbon-epoxy Composites with Shape Memory Alloy wires,” In Persian, Mechanical Engineering Journal, Vol. 5, No. 1, pp. 81-89, 2020.
[20] Meyer, M., Dietrich, S., Schulz H., Mondschein A., “Comparison of the Technical Performance of Leather, Artificial Leather, and Trendy Alternatives,” Coatings, Vol. 11, No. 2, pp. 226-238, 2021.
[21] Liu L., Qian       X., “Current Advances of Polyurethane/Graphene Composites and Its Prospects in Synthetic Leather: A Review,” European Polymer Journal, Vol.  161, 110837, 2021.