نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، واحد بین‌المللی کیش، دانشگاه آزاد اسلامی، جزیره کیش

2 استادیار، گروه مهندسی عمران، واحد صفادشت، دانشگاه آزاد اسلامی، تهران.

3 استادیار، گروه مهندسی عمران، واحد رودهن، دانشگاه آزاد اسلامی، رودهن.

10.22068/jstc.2022.547520.1768

چکیده

این تحقیق به منظور تقویت خواص مکانیکی سیمان، بر بکار گیری از نانولوله‌های کربنی به دلیل داشتن خواص مکانیکی عالی تمرکز کرده است. اگرچه کاربرد نانولوله های کربنی بعنوان تقویت کننده مواد سیمانی به موضوع هیجان انگیزی برای تحقیقات در توسعه بتن و سیمان مطرح‌شده بود, اما به دلیل چالش‌های ذاتی این ماده در توزیع و انطباق پذیری با محیط کاربرد, عملکرد چشم‌گیری مطابق بر انتظارات حاصل نشد. در این راستا به عنوان یک نوآوری تحقیقاتی، برای غلبه بر چالش عدم توزیع یکنواخت نانولوله‌های کربنی آلی در محیط پایه آبی زمینه سیمان از تکنیک‌های پیشرفته سنتز نانو کامپوزیت‌های پلیمر و پلیمریزاسیون مینی امولسیونی استفاده شد. نتایج این تحقیق نشان داد که نانولوله‌های کربنی در امولسیون‌های پلیمری پراکنده می‌شوند و لاتکس پلیمری نیز به‌خوبی درزمینه پایه آبی سیمان پراکنده می‌شود و توزیع گسترده‌ای از نانو ذرات را به‌منظور بهره‌گیری از بیشترین عملکرد سطحی و خصوصیات مکانیکی آن‌ها میسر می‌کند. عدم کلوخه شدن و تجمع نانو ذرات در ساختار سیمان سبب بهره‌گیری از بیشترین سطح واکنشی و فیزیکی از این نانو ذرات شده است که به‌طور چشمگیری بر تقویت خصوصیات مکانیکی توده سیمان پس از سخت شدن تأثیر داشته است به طوری که نتایج تجربی افزایش قابل‌توجه مدول یانگ تا 580٪، از 4.12 گیگاپاسکال برای نمونه معیار در مقایسه با 28 گیگاپاسکال برای نمونه 4 اصلاح‌شده با 4 درصد وزنی نانو پلیمر را نشان می‌دهد. این نمونه ها در فرم دوغاب نیز خصوصیات رئولوژی معیار برای قابلیت پمپاژ و اعمال فشار هیدروستاتیکی کافی برای کنترل چاه را به خوبی مهیا می کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Extraction of Mechanical Properties of Carbon Nanotubes in water Based Polymer latex for Application in Petroleum Well Cementing

نویسندگان [English]

  • Hamid Bazrkar 1
  • Alireza Lork 2
  • Babak Aminnejhad 3

1 Department of Civil Engineering, Kish International Branch, Islamic Azad University, Kish Island, Iran.

2 Department of civil engineering, Safadasht Branch, Islamic Azad University, Tehran, Iran.

3 Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran.

چکیده [English]

Cement protector sheath as a factor of durability and stability in oil and gas wellbore structure plays a vital role in the continuous sustainable production from hydrocarbon reservoirs. In order to enhance the mechanical properties of cement protector sheath, this research has focused on the use of carbon nanotubes due to their proven excellent mechanical properties. Although this idea has previously been an exciting topic for research in the development of cement and concrete, In this regard, as research innovation, to overcome the non-uniform distribution challenges of organic carbon nanotubes in the cement aqueous base medium, an advanced technique for making emulsion nano polymers was handled to disperse the nanoparticle cores in the polymer matrix. According to the findings of this work, carbon nanotubes disperse effectively in polymer emulsions, and polymer latex disperses well in the aqueous base of cement, allowing for a wide dispersion of nanoparticles to benefit from their maximal surface performance and mechanical properties. Non-agglomeration of nanoparticles in the cement structure has led to the use of the highest reactive and physical surface of these nanoparticles, which has significantly strengthened the mechanical properties of cement mass after hardening. The experimental results significantly increase the Young modulus to 580% From 4.12 GPa for the benchmark sample compared to 28 GPa for the modified sample with 4%W of the nanopolymer. The optimized samples in slurry form also provide good rheological properties for pumping capability and sufficient hydrostatic pressure to control the wellbore pressure.

کلیدواژه‌ها [English]

  • Mechanical strength
  • Elastic properties
  • Carbon nanotubes
  • Cement compounds Concrete strength
  • Oil well cement
[1]  Dahi Taleghani, A., Li, G. and  Moayeri, M., “Smart Expandable Cement Additive to Achieve Better Wellbore Integrity“ Journal of Energy Resources Technology, Vol. 139, No. 6, 2017.
[2]  Li, M., Deng, S., Yu, Y., Jin, J., Yang, Y. and  Guo, X., “Mechanical Properties and Microstructure of Oil Well Cement Stone Enhanced with Tetra-Needle Like Zno Whiskers“ Construction and Building Materials, Vol. 135, pp. 59-67, 2017.
[3]  Guo, S., Bu, Y., Liu, H. and  Guo, X., “The Abnormal Phenomenon of Class G Oil Well Cement Endangering the Cementing Security in the Presence of Retarder“ Construction and Building Materials, Vol. 54, pp. 118-122, 2014.
[4]  De Andrade, J. and  Sangesland, S., “Cement Sheath Failure Mechanisms: Numerical Estimates to Design for Long-Term Well Integrity“ Journal of Petroleum Science and Engineering, Vol. 147, pp. 682-698, 2016.
[5]  Petersen, T. A. and  Ulm, F.-J., “Radial Fracture in a Three-Phase Composite: Application to Wellbore Cement Liners at Early Ages“ Engineering Fracture Mechanics, Vol. 154, pp. 272-287, 2016.
[6] Stynoski, P., Mondal, P. and  Marsh, C., “Effects of Silica Additives on Fracture Properties of Carbon Nanotube and Carbon Fiber Reinforced Portland Cement Mortar“ Cement and Concrete Composites, Vol. 55, pp. 232-240, 2015.
[7]  Xu, S., Liu, J. and  Li, Q., “Mechanical Properties and Microstructure of Multi-Walled Carbon Nanotube-Reinforced Cement Paste“ Construction and Building Materials, Vol. 76, pp. 16-23, 2015.
[8]  Bharj, J., “Experimental Study on Compressive Strength of Cement-Cnt Composite Paste“ Indian Journal of Pure & Applied Physics (IJPAP), Vol. 52, No. 1, pp. 35-38, 2015.
[9] Al-Rub, R. K. A., Ashour, A. I. and  Tyson, B. M., “On the Aspect Ratio Effect of Multi-Walled Carbon Nanotube Reinforcements on the Mechanical Properties of Cementitious Nanocomposites“ Construction and building materials, Vol. 35, pp. 647-655, 2012.
[10] Metaxa, Z. S., Konsta-Gdoutos, M. S. and  Shah, S. P., “Mechanical Properties and Nanostructure of Cement-Based Materials Reinforced with Carbon Nanofibers and Polyvinyl Alcohol (Pva) Microfibers“ Special Publication, Vol. 270, pp. 115-124, 2010.
[11] Sanchez, F. and  Sobolev, K., “Nanotechnology in Concrete–a Review“ Construction and building materials, Vol. 24, No. 11, pp. 2060-2071, 2010.
[12] Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M. and  Leonhardt, A., “Dispersion of Carbon Nanotubes and Its Influence on the Mechanical Properties of the Cement Matrix“ Cement and Concrete Composites, Vol. 34, No. 10, pp. 1104-1113, 2012.
[13] Zou, B., Chen, S. J., Korayem, A. H., Collins, F., Wang, C. M. and  Duan, W. H., “Effect of Ultrasonication Energy on Engineering Properties of Carbon Nanotube Reinforced Cement Pastes“ Carbon, Vol. 85, pp. 212-220, 2015.
[14] Rahimirad, M. and  Baghbadorani, J. D., “Properties of Oil Well Cement Reinforced by Carbon Nanotubes“ in Proceeding of  OnePetro, pp.
[15] Metaxa, Z. S., Konsta-Gdoutos, M. S. and  Shah, S. P., “Carbon Nanofiber Cementitious Composites: Effect of Debulking Procedure on Dispersion and Reinforcing Efficiency“ Cement and Concrete Composites, Vol. 36, pp. 25-32, 2013.
[16] Wu, J., Li, M. and  Zhang, A., “Synthesis and Characterization of Sss/Ham/Aa Terpolymer as a Fluid Loss Additive for Oil Well Cement“ Journal of Applied Polymer Science, Vol. 135, No. 22, pp. 46266, 2018.
[17] Cui, X., Han, B., Zheng, Q., Yu, X., Dong, S., Zhang, L. and  Ou, J., “Mechanical Properties and Reinforcing Mechanisms of Cementitious Composites with Different Types of Multiwalled Carbon Nanotubes“ Composites Part A: Applied Science and Manufacturing, Vol. 103, pp. 131-147, 2017.
[18] Wang, M., Wang, R., Yao, H., Farhan, S., Zheng, S., Wang, Z., Du, C. and  Jiang, H., “Research on the Mechanism of Polymer Latex Modified Cement“ Construction and Building Materials, Vol. 111, pp. 710-718, 2016.
[19] Chung, D. D. L., “Use of Polymers for Cement-Based Structural Materials“ Journal of materials science, Vol. 39, No. 9, pp. 2973-2978, 2004.
[20] Fowler, D. W., “Polymers in Concrete: A Vision for the 21st Century“ Cement and concrete composites, Vol. 21, No. 5-6, pp. 449-452, 1999.
[21] Liu, K., Cheng, X., Zhang, X., Guo, X. and  Zhuang, J., “Design of Low-Density Cement Optimized by Cellulose-Based Fibre for Oil and Natural Gas Wells“ Powder technology, Vol. 338, pp. 506-518, 2018.
[22] Kumar, A., Gupta, G., Mehra, R., Tambe, R. and  Ahuja, G., “Flexible Cement Extends Wellbore Life with an Integrated Approach to Zonal Isolation“ in Proceeding of  OnePetro, pp.
[23] Soltanian, H., Ataei, M., Khalokakaie, R. and  Kazemzadeh, E., “Using an Elastic, Expandable Sealant System for Zonal Isolation of Maroon Wells: A Laboratory Study“ Journal of Petroleum Science and Technology, Vol. 7, No. 1, pp. 13-22, 2017.
[24] Morris, W., Criado, M. A., Robles, J. and  Bianchi, G., “Design of High Toughness Cement for Effective Long Lasting Well Isolations“ in Proceeding of  OnePetro, pp.
[25] Dresselhaus, M. S., Dresselhaus, G. and  Saito, R., “Physics of Carbon Nanotubes“ Carbon, Vol. 33, No. 7, pp. 883-891, 1995.
[26] Yao, Z., Postma, H. W. C., Balents, L. and  Dekker, C., “Carbon Nanotube Intramolecular Junctions“ Nature, Vol. 402, No. 6759, pp. 273-276, 1999.
[27] Al Mafarage, A. M., “Processing and Properties of Multifunctional Two-Dimensional Nanocomposite Based on Single Wall Carbon Nanotubes“, 2019.
[28] Hussain, F., Hojjati, M., Okamoto, M. and  Gorga, R. E., “Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview“ Journal of composite materials, Vol. 40, No. 17, pp. 1511-1575, 2006.
[29] Mitchell, C. A., Bahr, J. L., Arepalli, S., Tour, J. M. and  Krishnamoorti, R., “Dispersion of Functionalized Carbon Nanotubes in Polystyrene“ Macromolecules, Vol. 35, No. 23, pp. 8825-8830, 2002.
[30] Eitan, A., Jiang, K., Dukes, D., Andrews, R. and  Schadler, L. S., “Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites“ Chemistry of materials, Vol. 15, No. 16, pp. 3198-3201, 2003.
[31] Star, A., Stoddart, J. F., Steuerman, D., Diehl, M., Boukai, A., Wong, E. W., Yang, X., Chung, S. W., Choi, H. and  Heath, J. R., “Preparation and Properties of Polymer‐Wrapped Single‐Walled Carbon Nanotubes“ Angewandte Chemie, Vol. 113, No. 9, pp. 1771-1775, 2001.
[32] Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, D. and  Zhu, S., “Study on Poly (Methyl Methacrylate)/Carbon Nanotube Composites“ Materials Science and Engineering: A, Vol. 271, No. 1-2, pp. 395-400, 1999.
[33] Jin, Z., Pramoda, K. P., Xu, G. and  Goh, S. H., “Dynamic Mechanical Behavior of Melt-Processed Multi-Walled Carbon Nanotube/Poly (Methyl Methacrylate) Composites“ Chemical Physics Letters, Vol. 337, No. 1-3, pp. 43-47, 2001.
[34] Cooper, C. A., Ravich, D., Lips, D., Mayer, J. and  Wagner, H. D., “Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix“ Composites science and technology, Vol. 62, No. 7-8, pp. 1105-1112, 2002.
[35] Roy, S., Petrova, R. S. and  Mitra, S., “Effect of Carbon Nanotube (Cnt) Functionalization in Epoxy-Cnt Composites“ Nanotechnology reviews, Vol. 7, No. 6, pp. 475-485, 2018.
[36] Mayank, Kaur Billing, B., Agnihotri, P. K., Kaur, N., Singh, N. and  Jang, D. O., “Ionic Liquid-Coated Carbon Nanotubes as Efficient Metal-Free Catalysts for the Synthesis of Chromene Derivatives“ ACS Sustainable Chemistry & Engineering, Vol. 6, No. 3, pp. 3714-3722, 2018.
[37] Mamaghani, M. Y., Pishvaei, M. and  Kaffashi, B., “Synthesis of Latex Based Antibacterial Acrylate Polymer/Nanosilver Via in Situ Miniemulsion Polymerization“ Macromolecular Research, Vol. 19, No. 3, pp. 243-249, 2011.
[38] Api, R. P., “10b-2: Api Recommended Practice 10b-2, Recommended Practice for Testing Well Cements“ API RP 10B-2, 2013.
[39] ASTM, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-In. Or [50-Mm] Cube Specimens)“ West Conshohocken: ASTM International, 2016.
[40] ASTM, “Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. Astm Standards on Disc, 04.08. Desination:D3967; “, 2001.