نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی دانشکده مهندسی مکانیک-دانشگاه صنعتی اصفهان

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

10.22068/jstc.2022.546600.1766

چکیده

کامپوزیت های پلیمری پایه نفتی می توانند عامل گسترش اشتعال علیرغم کاربردهای متعدد خود باشند. تحقیقات انجام شده بر روی اشتعال‌پذیری و خواص ضد حریق کامپوزیت‌ها در مقایسه با مطالعات خواص مکانیکی آنها ناچیز بوده که بیانگر اهمیت پرداختن به خواص چندمنظوره کامپوزیت ها با خواص مقاومت در برابر آتش است. در این تحقیق پلی یورتان دو جزئی با زئولیت طبیعی و نانوصفحات گرافیتی به منظور بررسی مقاومت به آتش و خواص بهینه مکانیکی فوم های کامپوزیتی ترکیب شد. همچنین ترکیب پلی یورتان با پلی اوره بنابر فرضیه مطالعه با درصد بهینه 40% به صورت کامپوزیت ترکیبی هم‌پایه بررسی شد. نتایج نشان داد میکرو/نانوکامپوزیت های تقویت شده زئولیت و نانوصفحات گرافیتی به ترتیب منجر به افزایش مدول یانگ کششی معادل 200 و 300% شده و افزودن زئولیت باعث افزایش استحکام در کشش کامپوزیت های می شود. آزمایشات نشان داد مدول خمشی نیز با افزودن دو فیلر افزایش می یابد. به منظور افزایش خواص مکانیکی، پارچه الیاف شیشه به کامپوزیت ترکیبی پلی یورتان/پلی اوره با خواص بهینه لایه گذاری شد که منجر به افزایش 600 و 200 درصدی مدول یانگ خمشی در حالت دولایه شد. روکش پلی اوره روی کامپوزیت ها با درصد بهینه نشان داد که نرخ سوختن تا 23 میلیمتر بر دقیقه کاهش یافته و مدت سوختن طبق استاندارد UL94 معادل 200 ثانیه گردید. کامپوزیت پلی یورتان/پلی اوره تقویت شده با زئولیت 2 درصد وزنی منجر به نرخ سوختن 4.9 میلیمتر بر دقیقه شده که در دامنه مجاز 80 درصد کمتر از حداکثر نرخ ممکن در استاندارد است.

کلیدواژه‌ها

عنوان مقاله [English]

Fire resistance polyurethane/poly Urea micro/Nanocomposite foams reinforced with natural zeolite/Graphite nanoplatelets (GNP)

نویسندگان [English]

  • Mehdi Karevan 1
  • Marzieh Fallah 2

1 Faculty member- Mechanical Eng. Dept. Isfahan Univ. of Technology

2 Mechanical Eng. Department,, Isfahan University of Technology,,, Isfahan, Iran

چکیده [English]

Petroleum based polymer composites could be a factor in the development of fire unlike their numerous applications. The research performed on the fire resistance and flammability of composites is not comparable with those conducted on the mechanical behavior of composites demonstrating the importance of studying multi-functional composites of fire resistance behavior. In this work, two-part polyurethane was reinforced with natural zeolite and graphite nanoplatelets (GNP) to examine fire resistance and optimized mechanical behavior of the composite foams. Moreover, poly urea was added with the optimized ratio of 40% into polyurethane composites based on the study hypothesis. The results showed that zeolite and GNP filled nano/microcomposites led to a 200 and 300% improvement in the tensile modulus of the composites, respectively. It was further sown that both fillers resulted in enhancement in the flexural modulus, too. To enhance the mechanical behavior, fiber glass mat was laminated with the optimized polyurethane/poly urea compound leading to a 600 and 200% improvement in the flexural modulus, respectively, in the case of two-layer reinforcement. The poly urea coating on the optimized composite specimens demonstrated the reduced burning rate of 23 mm/min and a 200 s flame time based on the UL94 standard. The mixed compound of polyurethane/poly urea filled with 2 wt% of zeolite led to the burning rate of 4.9 mm/min being in the allowable range above 80% lower than the maximum possible rate set forth in the standard.

کلیدواژه‌ها [English]

  • Mechanical properties
  • Polyurethane foam
  • Fire resistance
  • Natural zeolite
  • Poly urea
[1]  Sang, G., Xu, P., Yan, T., Murugadoss, V., Naik, N., Ding, Y. and  Guo, Z., “Interface Engineered Microcellular Magnetic Conductive Polyurethane Nanocomposite Foams for Electromagnetic Interference Shielding,“ Nano-Micro Letters, Vol. 13, No. 1, pp. 1-16, 2021.
[2]  Alavi Nikje, M. M., Ghavidel Kelishemi, R., Akbar, R. and  Vakili, M., “Synthesis of a Novel Magnetic Flexible Polyurethane Foam Nanocomposite,“ In Persian, Applied Chemistry, No. 35, pp. 14, 2015.
[3]  Zhai, Y., Yu, Y., Zhou, K., Yun, Z., Huang, W., Liu, H., Xia, Q., Dai, K., Zheng, G. and  Liu, C., “Flexible and Wearable Carbon Black/Thermoplastic Polyurethane Foam with a Pinnate-Veined Aligned Porous Structure for Multifunctional Piezoresistive Sensors,“ Chemical Engineering Journal, Vol. 382, pp. 122985, 2020.
[4]  Safari, H., Karevan, M. and  Nahvi, H., “Mechanical Characterization of Natural Nano-Structured Zeolite/Polyurethane Filled 3d Woven Glass Fiber Composite Sandwich Panels,“ Polymer Testing, Vol. 67, pp. 284-294, 2018.
[5]  Sharmin, E. and  Zafar, F., “Polyurethane: An Introduction,“ Polyurethane, pp. 3-16, 2012.
[6]  Palve, A. M. and  Gupta, R. K., “Polyurethane-Based Nanocomposites and Their Applications,“ Polyurethane Chemistry: Renewable Polyols and Isocyanates, Eds., pp. 225-255: ACS Publications, 2021.
[7]  Bhinder, J., Verma, S. K. and  Agnihotri, P. K., “Qualifying Carbon Nanotube Reinforced Polyurethane Foam as Helmet Inner Liner through in-Situ, Static and Low Velocity Impact Testing,“ Materials Science and Engineering: B, Vol. 274, pp. 115496, 2021.
[8]  Pattanayak, D. S., Mishra, J., Nanda, J., Sahoo, P. K., Kumar, R. and  Sahoo, N. K., “Photocatalytic Degradation of Cyanide Using Polyurethane Foam Immobilized Fe-Tcpp-S-Tio2-Rgo Nano-Composite,“ Journal of Environmental Management, Vol. 297, pp. 113312, 2021.
[9]  Dodanke, A. H., Dabiryan, H. and  Hamze, S., “Experimental Study of the Impact Properties of Foam Based Composites Reinforced with Warp-Knitted Spacer Fabric,“ In Persian, journal of science and technology of composites, Vol. 8, No. 1, pp. 1353-1362, 2021.
[10] Skleničková, K., Abbrent, S., Halecký, M., Kočí, V. and  Beneš, H., “Biodegradability and Ecotoxicity of Polyurethane Foams: A Review,“ Critical Reviews in Environmental Science and Technology, pp. 1-46, 2020.
[11] Zhang, Y., Josien, L., Salomon, J. P., Simon-Masseron, A. l. and  Lalevée, J., “Photopolymerization of Zeolite/Polymer-Based Composites: Toward 3d and 4d Printing Applications,“ ACS Applied Polymer Materials, Vol. 3, No. 1, pp. 400-409, 2020.
[12] Serati-Nouri, H., Jafari, A., Roshangar, L., Dadashpour, M., Pilehvar-Soltanahmadi, Y. and  Zarghami, N., “Biomedical Applications of Zeolite-Based Materials: A Review,“ Materials Science and Engineering: C, Vol. 116, pp. 111225, 2020.
[13] Ahmadi, B. and  Shekarchi, M., “Use of Natural Zeolite as a Supplementary Cementitious Material,“ Cement and concrete composites, Vol. 32, No. 2, pp. 134-141, 2010.
[14] Kausar, A. and  Siddiq, M., “Poly (Ether–Imide)/Polyurethane Foams Reinforced with Graphene Nanoplatelet: Microstructure, Thermal Stability, and Flame Resistance,“ International Journal of Polymer Analysis and Characterization, Vol. 21, No. 5, pp. 436-446, 2016.
[15] Barikani, M., Askari, F., Barikani, M. and  Barmar, M., “Effect of Fire Retardants in Improvement of Combustion Restriction and Thermal Decomposition of Polyurethane Foams: A Review,“ In Persian, Iranian Journal of Polymer Science and Technology, Vol. 24, No. 1, pp. 3-31, 2011.
[16] Ababsa, H. S., Safidine, Z., Mekki, A., Grohens, Y., Ouadah, A. and  Chabane, H., “Fire Behavior of Flame-Retardant Polyurethane Semi-Rigid Foam in Presence of Nickel (Ii) Oxide and Graphene Nanoplatelets Additives,“ Journal of Polymer Research, Vol. 28, No. 3, pp. 1-14, 2021.
[17] Thirumal, M., Khastgir, D., Nando, G., Naik, Y. and  Singha, N. K., “Halogen-Free Flame Retardant Puf: Effect of Melamine Compounds on Mechanical, Thermal and Flame Retardant Properties,“ Polymer Degradation and Stability, Vol. 95, No. 6, pp. 1138-1145, 2010.
[18] Harikrishnan, G., Singh, S. N., Kiesel, E. and  Macosko, C. W., “Nanodispersions of Carbon Nanofiber for Polyurethane Foaming,“ Polymer, Vol. 51, No. 15, pp. 3349-3353, 2010.
[19] Usta, N., “Investigation of Fire Behavior of Rigid Polyurethane Foams Containing Fly Ash and Intumescent Flame Retardant by Using a Cone Calorimeter,“ Journal of Applied Polymer Science, Vol. 124, No. 4, pp. 3372-3382, 2012.
[20] Lorenzetti, A., Modesti, M., Gallo, E., Schartel, B., Besco, S. and  Roso, M., “Synthesis of Phosphinated Polyurethane Foams with Improved Fire Behaviour,“ Polymer degradation and stability, Vol. 97, No. 11, pp. 2364-2369, 2012.
[21] Jiao, L., Xiao, H., Wang, Q. and  Sun, J., “Thermal Degradation Characteristics of Rigid Polyurethane Foam and the Volatile Products Analysis with Tg-Ftir-Ms,“ Polymer Degradation and Stability, Vol. 98, No. 12, pp. 2687-2696, 2013.
[22] Zhang, L., Zhang, M., Hu, L. and  Zhou, Y., “Synthesis of Rigid Polyurethane Foams with Castor Oil-Based Flame Retardant Polyols,“ Industrial Crops and Products, Vol. 52, pp. 380-388, 2014.
[23] Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M. and  Bergström, L., “Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide,“ Nature nanotechnology, Vol. 10, No. 3, pp. 277-283, 2015.
[24] Liu, Y., He, J. and  Yang, R., “The Synthesis of Melamine-Based Polyether Polyol and Its Effects on the Flame Retardancy and Physical–Mechanical Property of Rigid Polyurethane Foam,“ Journal of Materials Science, Vol. 52, No. 8, pp. 4700-4712, 2017.
[25] Wang, C., Wu, Y., Li, Y., Shao, Q., Yan, X., Han, C., Wang, Z., Liu, Z. and  Guo, Z., “Flame‐Retardant Rigid Polyurethane Foam with a Phosphorus‐Nitrogen Single Intumescent Flame Retardant,“ Polymers for Advanced Technologies, Vol. 29, No. 1, pp. 668-676, 2018.
[26] Aydoğan, B. and  Usta, N., “Cone Calorimeter Evaluation on Fire Resistance of Rigid Polyurethane Foams Filled with Nanoclay/Intumescent Flame Retardant Materials,“ Res. Eng. Struct. Mater, Vol. 4, pp. 71-77, 2018.
[27] Dasari, A., Yu, Z.-Z., Cai, G.-P. and  Mai, Y.-W., “Recent Developments in the Fire Retardancy of Polymeric Materials,“ Progress in Polymer Science, Vol. 38, No. 9, pp. 1357-1387, 2013.
 [28]        Hovhannisyan, V. A., Dong, C. Y., Lai, F. J., Chang, N. S. and  Chen, S. J., “Natural Zeolite for Adsorbing and Release of Functional Materials,“ Journal of biomedical optics, Vol. 23, No. 9, pp. 091411, 2018.
[29] G. P. Tandon, G. J. W., “The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites,“ Polymer composites, Vol. 5, No. 4, pp. 327-333, 1984.
[30] Coudert, F. X., “Systematic Investigation of the Mechanical Properties of Pure Silica Zeolites: Stiffness, Anisotropy, and Negative Linear Compressibility,“ Physical Chemistry Chemical Physics, Vol. 15, No. 38, pp. 16012-16018, 2013.
[31] Karevan, M., Pucha, R. V., Bhuiyan, M. A. and  Kalaitzidou, K., “Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites,“ Carbon Letters (Carbon Lett.), Vol. 11, No. 4, pp. 325-331, 2010.
[32] Minceva, M., Fajgar, R., Markovska, L. and  Meshko, V., “Comparative Study of Zn2+, Cd2+, and Pb2+ Removal from Water Solution Using Natural Clinoptilolitic Zeolite and Commercial Granulated Activated Carbon. Equilibrium of Adsorption,“ Separation Science and Technology, Vol. 43, No. 8, 2008.
[33] Ciobanu, G., Carja, G. and  Ciobanu, O., “Structure of Mixed Matrix Membranes Made with Sapo-5 Zeolite in Polyurethane Matrix,“ Microporous and mesoporous materials, Vol. 115, No. 1-2, pp. 61-66, 2008.
[34] Kirshenbaum, G., “Conference Report: Recent Advances in Flame Retardancy of Polymeric Materials,“, 2005.
[35] Morgan, A. B. and  Gilman, J. W., “An Overview of Flame Retardancy of Polymeric Materials: Application, Technology, and Future Directions,“ Fire and Materials, Vol. 37, No. 4, pp. 259-279, 2013.
[36] Zangiabadi, Z. and  Jafar Hadianfard, M., “Effects of Size and Structure of Silica Nanoparticles on Morphology and Tensile Behavior of Flexible Nanocomposite Foams Based on Polyurethane ,“ In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 5, 2016.