نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، فیزیک حالت جامد، دانشگاه مازندران، مازندران، ایران

2 استاد، فیزیک حالت جامد، دانشگاه مازندران، مازندران، ایران

3 استادیار، مهندسی مواد، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

تقویت مواد با استفاده از نانولوله‌های کربنی، رویکرد جدید در ساخت کامپوزیت‌های نو و پیشرفته است. در این بین، استفاده از نانولوله‌های کربنی برای تقویت مواد سیمانی از جمله سیمان‌های ترمیمی مورد توجه قرار گرفته است. چالش مهم در ساخت کامپوزیت سیمان- نانولوله کربنی فرایند سنتز نانولوله روی سیمان است. در این مقاله، سنتز و مشخصه‌یابی کامپوزیت سیمان- نانولوله کربنی تولید شده به روش نهشت بخار شیمیایی مورد ارزیابی قرار گرفت. این سنتز در دمای 800 درجه سانتی‌گراد و با استفاده از گاز‌ استیلن به عنوان منبع کربنی، آرگون به عنوان گاز حامل و اکسید آهن هماتیتی به عنوان عامل کاتالیستی انجام شد. از روش تلقیح مرطوب برای آماده‌سازی بستر کاتالیستی شامل ذرات سیمان و اکسید آهن استفاده شد. مشخصه‌یابی کامپوزیت سیمان-نانولوله کربن و کیفیت نانولوله‌های کربنی به ترتیب با استفاده از تصاویر میکرسکوپ‌های الکترونی روبشی و عبوری و آنالیز اشعه ایکس و طیف‌سنجی رامان انجام شد. همچنین بهره‌کربنی محصول سنتز‌شده به وسیله آنالیز حرارتی جرمی تعیین شد. نتایج حاصل از آزمایشات نشان داد که به روش نهشت بخار شیمیایی امکان رسوب نانولوله‌های کربنی با توزیع قطری، بهره و کیفیت مناسب وجود دارد. همچنین مشاهده شد که بیشتر نانولوله‌های کربنی سنتز شده دارای سرهای باز هستند که بیان‌گر رشد از سر نانولوله‌های کربنی است. در نهایت نتایج آزمون‌های مکانیکی نشان داد که حضور نانولوله‌های کربنی با ساز و کار پل‌زدن، بیرون‌زدگی و پر‌کردن تخلخل‌ها موجب تقویت مقاومت فشاری نمونه‌های ملات سیمان شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Synthesis and characterization of cement- CNT composite produced by CVD process

نویسندگان [English]

  • Fatemeh Ghaharpour 1
  • Ali Bahari 2
  • Majid Abbasi 3

1 Department of Physics, University of Mazandaran, Mazandaran, Iran

2 Department of Physics, University of Mazandaran, Mazandaran, Iran

3 Department of Materials Science and Engineering, Babol Noshirvani University of Technology, Babol, Iran

چکیده [English]

Reinforcing of materials using carbon nanotubes are new approach for development of new and or advanced composites. In the meantime, the use of carbon nanotubes to reinforce cementitious materials, especialy reconstructing cement, is considered. The synthesis process of nanotubes on cement is the main problem in making the composite. In the paper, synthesis and characterization of cement-CNT composite produced by CVD process was investigated. The CVD process at 800°C using acetylene gas as a carbon source, argon as carrier gas and hematite iron oxide as a catalyst was performed. Wet impregnation method for preparing the catalyst bed of cement and iron oxide particles were used. FESEM, EDX, TEM and Raman spectroscopy were used to characterization CNTs/Cement composite and the size, morphology and quality of CNTs respectively. The growth yield of carbon nanotubes was determined by TGA. The results showed that the chemical vapor deposition method allows the deposition of carbon nanotubes with proper distribution of diameters and quality. It was also observed that most of the synthesized carbon nanotubes have open ends that represent the end growth of the carbon nanotubes. Finally the result of mechanical tests indicated that CNTs addition to the cement paste dramatically the increased compressive strength by bridging between cracks and filling pores.

کلیدواژه‌ها [English]

  • Cement
  • Carbon nanotubes
  • Composite
  • Chemical vapor deposition
[1] Kim, H. Nam, I. and Lee, H., "Enhanced Effect Of Carbon Nanotube On Mechanical And Electrical Properties Of Cement Composites By Incorporation Of Silica Fume," Composite Structures, Vol. 107, pp. 60-69, 2014.
[2] Musso, S. Musso, S. Tulliani, J.M. Ferro, G. Tagliaferro, A., "Influence Of Carbon Nanotubes Structure On The Mechanical Behavior Of Cement Composites," Composites Science and Technology, ,Vol. 69, No. 11, pp. 1985-1990, 2009.
[3] Singh, L.P. Karade, S.R. Bhattacharyya, S.K. Yousuf, M.M. Ahalawat, S., "Beneficial Role of Nanosilica In Cement Based Materials–A Review," Construction and Building Materials, Vol. 47, pp. 1069-1077, 2013.
[4] Popov, V.N., "Carbon Nanotubes: Properties and Application,” Materials Science and Engineering: R: Reports, Vol. 43, No. 3, pp. 61-102, 2004.
[5] Khosravi, H. Eslami-Farsani, R. Ebrahimnezhad-Khaljiri, H., "An Experimental Study On Mechanical Properties Of Epoxy/Basalt/Carbon Nanotube Composites Under Tensile And Flexural Loadings," Journal of Science and Technology of Composites, Vol. 3, No. 2, pp.754-781, 2016. (in Persian)
[6] Esmaili, P. Azdast, T. Doniavi, A. Hasanzadeh, R. Mamaghani, S. Eungkee, R.L.," Experimental Investigation Of Mechanical Properties Of Injected Polymeric Nanocomposites Containing Multiwalled Carbon Nanotubes According To Design Of Experiments," In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 3, pp. 67-74, 2015. (in Persian)
[7] Wu, M. Johannesson, B. and Geiker, M., "A Review: Self-Healing In Cementitious Materials and Engineered Cementitious Composite As A Self-Healing Material," Construction and Building Materials, Vol. 28, No.1, pp. 571-583, 2012.
[8] Chen, S.J. Collins, F.G. Macleod, A.J.N. Pan, Z. Duan, W.H. and Wang, C.M., "Carbon Nanotube–Cement Composites: A Retrospect," The IES Journal Part A: Civil & Structural Engineering, Vol. 4, No. 4, pp. 254-265, 2011.
[9] Xu, S. Liu, J. and Li, Q., "Mechanical Properties and Microstructure of Multi-Walled Carbon Nanotube-Reinforced Cement Paste," Construction and Building Materials, Vol. 76, pp. 16-23, 2015.
[10] Konsta-Gdoutos, M.S. Metaxa, Z.S. and Shah, S.P., "Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials," Cement and Concrete Research, Vol. 40, No. 7, pp. 1052-1059, 2010.
[11] Chiang, Y.C. Lin, W.H. and Chang, Y.C., "The Influence Of Treatment Duration On Multi-Walled Carbon Nanotubes Functionalized By H2SO4/HNO3 Oxidation," Applied Surface Science, Vol .257, No. 6, pp. 2401-2410, 2011.
[12] Magrez, A. Seo, J.W. Smajda, R. Mionić, M. and Forró, L., "Catalytic CVD Synthesis Of Carbon Nanotubes: Towards High Yield And Low Temperature Growth," Materials, Vol. 3, No. 11, pp. 4871-4891, 2010.
[13] Nasibulin, A.G. Koltsova, T. Nasibulina, L.I. Anoshkin, I.V. Semencha, A. Tolochko O.V. and Kauppinen, E.I., "A Novel Approach To Composite Preparation By Direct Synthesis Of Carbon Nanomaterial On Matrix Or Filler Particles," Acta Materialia, Vol. 61, No. 6, pp.1862-1871, 2013.
[14] Dunens, O.M. MacKenzie, K.J. and Harris, A.T., "Synthesis of Multi-Walled Carbon Nanotubes on Red Mud’catalysts," Carbon, Vol .48, No. 8, pp. 2375-2377, 2010.
[15] Sun, S. Yu, X. Han, B. and Ou J., "In Situ Growth Of Carbon Nanotubes/Carbon Nanofibers On Cement/Mineral Admixture Particles: A Review," Construction and Building Materials, Vol. 49, pp. 835-840, 2013.
[16] Parveen, S. Rana, S. and Fangueiro, R., "A Review On Nanomaterial Dispersion, Microstructure, And Mechanical Properties Of Carbon Nanotube And Nanofiber Reinforced Cementitious Composites," Journal of Nanomaterials, Vol. 2013, pp. 80, 2013.
[17] Warakulwita, C. Yadnuma, S. Palukaa, V. Phuakkonga, O. Niamlaema, M. Pongpaisansereeb, K. Sinthupinyob, S. and Limtrakula, J., "Controlled Production Of Carbon Nanofibers Over Cement Clinker Via Oxidative Dehydrogenation Of Acetylene By Intrinsic Carbon Dioxide," Chemical Engineering Journal, Vol. 278, pp. 150-158, 2015.
[18] Tessonnier, J.P. and Su, D.S., "Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review," ChemSusChem, Vol. 4, No. 7, pp. 824-847, 2011.
[19] Dunens, O.M. Mac-Kenzie, K.J. and Harris, A.T., "Synthesis of Multiwalled Carbon Nanotubes on Fly Ash Derived Catalysts," Environmental Science & Technology, Vol. 43, No. 20, pp.7889-7894, 2009.
[20] Dresselhaus, M.S. Dresselhaus, G., Jorio, A. Souza-Filho, A.G. and Saito, R., "Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes," Carbon, Vol. 40, No. 12, pp. 2043-2061, 2002.
[21] Felisberto, M. Sacco, L. Mondragon, I. Rubiolo, G.H. Candal, R.J. and Goyanes, S., "The Growth Of Carbon Nanotubes On Large Areas Of Silicon Substrate Using Commercial Iron Oxide Nanoparticles As A Catalyst," Materials Letters, Vol. 64, No. 20, pp. 2188-2190, 2010.
[22] Choudhary, H. Anupama, A. Kumar, R. Panzi, M. Matteppanavar, S. Sherikar, B.N. and Sahoo, B., "Observation Of Phase Transformations In Cement During Hydration," Construction and Building Materials, Vol. 101, pp. 122-129, 2015.
[23] Tyson, B.M., "Carbon nanotube and nanofiber reinforcement for improving the flexural strength and fracture toughness of Portland cement paste", Master's thesis, Texas A&M University, 2010.