Micromechanics of stress transfer through the interphase in pull out test of fiber through the resin

Fathollah Taheri-Behrooz, Seyyed Mohammad Javad Mahdavizade, Mohammad Javad Gholami
School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
*P.O.B. 16846-13114, Tehran, Iran, taheri@iust.ac.ir

Abstract
In this paper, a micromechanical based model is presented to estimate the stress transfer in interphase of three-phase reinforced composites. The symmetric model consists of fiber, matrix and a layer in between them. In this study, composite constituents were considered as linear elastic materials. Also, matrix was treated as isotropic material while the fiber and the interphase were considered as transversely isotropic materials. The stress distribution solutions for intact model and partially debonded model are obtained. A pair of uncoupled partial differentiation equations was obtained in terms of unknown displacement components. The separation of variable with Eigenfunction expansion methods were used to drive the exact solution of the PDE's. Analytical solutions for the free boundary conditions on the external surface of the matrix are obtained to simulate the pull out test. In both cases, numerical findings revealed a good correlation with the analytical results.

Keywords
Micromechanics Interphase Stress transfer Intact Partially debonded

چکیده
این مقاله میکرومکانیکی‌های انتقال نیروی بین فیبر و گردن فیبر را با استفاده از روش سه‌پhasه مطالعه می‌کند. سه‌پhasه مدل شامل فیبر، گردن و پرده‌ای انتقالی می‌باشد. این مدل‌ها با استفاده از روش تجزیه‌یابی و روش ترکیبی حل گردیده و در صورتی که پرده‌ای انتقالی یکی از آن‌ها باشد در صورتی که تمامی آن‌ها باشند حل گردیده.

اطلاعات مقاله
چکیده
دریافت: 2017/11/29
پذیرش: 2017/11/29
کلیدواژه‌ها: ماکرومکانیک انکست بی‌پوستی فاز میکانیکی انکست انتقال نش طالب حالت سالم حالت تا حیات جدیدی

Please cite this article using:
در بررسی فاز مایلی مقالات مبتدی ارائه‌شده است که در این راستا، مقالات فاز مایلی برای کاربرانی که در هر زمانی به‌طور خودکار در فاز مایلی دهی‌یابی می‌کنند، چنین گفته شده است که می‌تواند در شرایط مختلف راهکاری برای ترکیب سنتی یک مدل درست‌سازی به شکلی متفاوتی از همان مدل قبلی استفاده کند (۲۹). به طور مطلق، این مقالات به‌طور خودکار، می‌توانند به‌طور خودکار در فاز مایلی دهی‌یابی، چنین گفته شده است که می‌تواند در شرایط مختلف راهکاری برای ترکیب سنتی یک مدل درست‌سازی به شکلی متفاوتی از همان مدل قبلی استفاده کند (۲۹).

۲- بنیان‌گذاری

۱- مناسب‌سازی

در بررسی فاز مایلی مقالات مبتدی ارائه‌شده است که در این راستا، مقالات فاز مایلی برای کاربرانی که در هر زمانی به‌طور خودکار در فاز مایلی دهی‌یابی می‌کنند، چنین گفته شده است که می‌تواند در شرایط مختلف راهکاری برای ترکیب سنتی یک مدل درست‌سازی به شکلی متفاوتی از همان مدل قبلی استفاده کند (۲۹). به طور مطلق، این مقالات به‌طور خودکار، می‌توانند به‌طور خودکار در فاز مایلی دهی‌یابی، چنین گفته شده است که می‌تواند در شرایط مختلف راهکاری برای ترکیب سنتی یک مدل درست‌سازی به شکلی متفاوتی از همان مدل قبلی استفاده کند (۲۹).

۲- مناسب‌سازی

در بررسی فاز مایلی مقالات مبتدی ارائه‌شده است که در این راستا، مقالات فاز مایلی برای کاربرانی که در هر زمانی به‌طور خودکار در فاز مایلی دهی‌یابی می‌کنند، چنین گفته شده است که می‌تواند در شرایط مختلف راهکاری برای ترکیب سنتی یک مدل درست‌سازی به شکلی متفاوتی از همان مدل قبلی استفاده کند (۲۹). به طور مطلق، این مقالات به‌طور خودکار، می‌توانند به‌طور خودکار در فاز مایلی دهی‌یابی، چنین گفته شده است که می‌تواند در شرایط مختلف راهکاری برای ترکیب سنتی یک مدل درست‌سازی به شکلی متفاوتی از همان مدل قبلی استفاده کند (۲۹).

۲- مناسب‌سازی

در بررسی فاز مایلی مقالات مبتدی ارائه‌شده است که در این راستا، مقالات فاز مایلی برای کاربرانی که در هر زمانی به‌طور خودکار در فاز مایلی دهی‌یابی می‌کنند، چنین گفته شده است که می‌تواند در شرایط مختلف راهکاری برای ترکیب سنتی یک مدل درست‌سازی به شکلی متفاوتی از همان مدل قبلی استفاده کند (۲۹). به طور مطلق، این مقالات به‌طور خودکار، می‌توانند به‌طور خودکار در فاز مایلی دهی‌یابی، چنین گفته شده است که می‌تواند در شرایط مختلف راهکاری برای ترکیب سنتی یک مدل درست‌سازی به شکلی متفاوتی از همان مدل قبلی استفاده کند (۲۹).
مایع نیز بستگی دارد. یکی‌یکی ضخامت رفتار سفت‌تری نسبت به مایع نیز بستگی دارد. در اثر این تحقیق، مایع‌سافت‌تر مرد هم تحلیل قرار گرفته است.

جدول 1 خواص فیبر‌پوش، لایه سیگی و زینه‌ی [34]

<table>
<thead>
<tr>
<th>σ_{ij}</th>
<th>σ_{ij}</th>
<th>σ_{ij}</th>
<th>σ_{ij}</th>
<th>σ_{ij}</th>
<th>σ_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده 1</td>
<td>ماده 1</td>
<td>ماده 1</td>
<td>ماده 1</td>
<td>ماده 1</td>
<td>ماده 1</td>
</tr>
<tr>
<td>0.025</td>
<td>0.25</td>
<td>23</td>
<td>210</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0.16</td>
<td>0.12</td>
<td>105</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0.35</td>
<td>0.35</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

Fig 1. Three-phase RVE with boundary and loading conditions.

شكل 1 مدل مرجع جسمی با شرایط مرزی

1-2-2-روابط تحلیلی

یک طورگری معادلات را به الگویی ساده‌تری در گیاه نیتروهیا وارد بر جسم بی‌صورت راوات (3) می‌باشد [33].

$$\sigma_{ij} = 0$$

(1)

$$\sigma_{ij} = c_{ijkl} \cdot e_{ij}$$

(2)

$$e_{ij} = \frac{1}{2}(u_{ij} + u_{ji})$$

(3)

با توجه به مدل فرضیه‌ی ماده عادی معادلات را به معادلات استاندارد به‌صورت راوات (4)[33] در نظر می‌گیریم:

$$\frac{\partial \sigma_{r} + \frac{1}{2} \frac{\partial}{\partial \theta} \tau_{r} + \frac{\sigma_{r} - \sigma_{\theta}}{r} + \frac{\partial}{\partial z} \tau_{z} = 0$$

(4)

$$\frac{\partial \sigma_{\theta} + \frac{1}{2} \frac{\partial}{\partial \theta} \tau_{\theta} + \frac{\tau_{r}}{r} + \frac{\partial}{\partial z} \tau_{z} = 0$$

$$\frac{\partial \tau_{r}}{\partial z} + \frac{1}{2} \frac{\partial}{\partial \theta} \tau_{\theta} + \frac{\tau_{r}}{r} + \frac{\partial}{\partial z} \tau_{z} = 0$$

$$\begin{bmatrix}
\sigma_{r} \\
\sigma_{\theta} \\
\tau_{r} \\
\tau_{\theta} \\
\tau_{z}
\end{bmatrix} =
\begin{bmatrix}
c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\
c_{12} & c_{11} & c_{13} & 0 & 0 & 0 \\
c_{13} & c_{13} & c_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}(c_{11} - c_{12})
\end{bmatrix}
\begin{bmatrix}
e_{r} \\
e_{\theta} \\
e_{\theta} \\
e_{r} \\
e_{r}
\end{bmatrix}$$

(5)

1 Speckle Interferometry with Electron Microscopy
بر اساس معادلات (6) (4) معادله نهایی بررسی قضیه حالت به دست می‌آید [33].

\[
\begin{bmatrix}
\frac{\partial u}{\partial r} \\
\frac{\partial w}{\partial r}
\end{bmatrix}
= \begin{bmatrix}
\frac{c_3}{r} & -c_\alpha & c_\gamma & 0 \\
-\alpha & 0 & 0 & \frac{1}{\rho}\n
\end{bmatrix}
\begin{bmatrix}
u \\
w
\end{bmatrix}
\] (12)

و برای دو مؤلفه دیگر معادله (13) برقرار است [33].

\[
\frac{\partial}{\partial r} \begin{bmatrix}
\sigma_r \\
\sigma_\theta
\end{bmatrix}
= \begin{bmatrix}
\frac{c_1}{r} & c_\alpha & c_\gamma & 0 \\
\frac{c_1}{r} & c_\alpha & c_\gamma & 0
\end{bmatrix}
\begin{bmatrix}
u \\
w
\end{bmatrix}
\] (13)

با در نظر گرفتن دو معادله دو رابطه قضیه حالت و اعمال چندین ضرب جبری معادله (14) حاصل می‌شود [33].

\[
(V_1^2 + \xi \alpha^2)(V_1^2 + \xi \alpha^2) w = 0,
\]

\[
(V_2^2 + \xi \alpha^2)(V_1^2 + \xi \alpha^2) w = 0,
\]

\[
(V_2^2 + \xi \alpha^2)(V_1^2 + \xi \alpha^2) w = 0,
\]

\[
(V_2^2 + \xi \alpha^2)(V_1^2 + \xi \alpha^2) w = 0,
\]

\[
|V_1| = \sqrt{\frac{\text{c}_{33} + \text{c}_{44}^2(1 + \frac{\text{c}_{33}^2 + \text{c}_{44}^2}{\text{c}_{11}^2})}{\text{c}_{11}}}
\]

(15)

بر این حال معادلات می‌توان از روش جداسازی متغیرها استفاده نمود که نتیجه‌اند به صورت معادلات (16) و (17) می‌باشد [33].

\[
w_s = \frac{h_s \sqrt{\alpha_s^2}}{\text{c}_{11}} + \frac{h_s \sqrt{\alpha_s^2}}{\text{c}_{11}}
\]

(16)

\[
u_s = \frac{h_s \sqrt{\alpha_s^2}}{\text{c}_{11}} + \frac{h_s \sqrt{\alpha_s^2}}{\text{c}_{11}}
\]

(17)

به طور مشابه از معادله شماره (3) دسته‌می‌آید [33].

\[
\frac{\partial}{\partial r} \begin{bmatrix}
\frac{\partial u}{\partial r} \\
\frac{\partial w}{\partial r}
\end{bmatrix}
= \begin{bmatrix}
\frac{c_1}{r} & c_\alpha & c_\gamma & 0 \\
\frac{c_1}{r} & c_\alpha & c_\gamma & 0
\end{bmatrix}
\begin{bmatrix}
u \\
w
\end{bmatrix}
\] (10)

با تعریف \(\text{c}_1 \) و \(\text{c}_2 \) همچنین نواحی موجود در روابط (16) و (17) با معادله (18) به دست می‌آید [33].
درنها: در این مقاله بررسی به صورت جامع از دو نوع رویکرد حل مشکلات از جمله رویکرد مستقیم و غیرمستقیم بررسی شد. در رویکرد مستقیم، دو روش رفع نهایی بررسی شدند، که از جمله آنها روش کلاسیک است. در رویکرد غیرمستقیم، دو روش کلاسیک است. در نهایت، حاصل‌بری و بهبود تغییرات در محیط‌ها و بایستی‌ها در این مقاله بررسی شد.
سازی و توزیع نیروی حجمی‌الغیر

شیب‌سازی و توزیع نرم‌افزار آبکس

به‌منظور بررسی صحبت‌های بالا مدل‌سازی جهت شبیه‌سازی اجزاء محدود در نرم‌افزار آبکس، استفاده می‌شود و با روش تحلیل مقاله شده است. خصوصیات مربوط به هندسه و صفحه‌های مکانیکی ماده جهت شبیه‌سازی قطعات مورد استفاده در مدل‌سازی است. پایه‌گیری تأثیر افزایش اپتیپری‌ها، مطالعه‌های مکانیکی در نرم‌افزار آبکس انجام شده است. نتایج حاصل، می‌دهد که با افزایش چگالی‌شده نقطه تکن در میدان افزایش می‌یابد. با افزایش نیروی در مقطع میابی فاز، میابی ارتباط دانشی افزایش می‌یابد و در وزن افزایش می‌یابد. بر مبنای نیروی ضریب عناصر، با روش تحلیل در نظر گرفته شده و تحلیل اجزاء می‌شود. شکل ۲ نشان‌دهنده مس انتقالی است. پاک‌سازی و توزیع نیروی حجمی‌الغیر می‌شود. شکل ۲ (ب) نیز نمایش دهنده شرایط مرزی استفاده شده در شبیه‌سازی است. سطح زمینی و لاک‌پوش در جهت انتقال حجمی مقدار ثابت است.

\[\gamma = \left(\frac{r}{L} - 1 \right) \text{dr} = \sigma_0 \pi r^2 dr \left(\frac{r}{L} \right) = 0 \leq r < r_f \] (54)

\[\sigma_0 = \sigma_{00} (1 + \alpha) \left(\sigma - \sigma_0 \right) \left(\varepsilon - \varepsilon_0 \right) \] (55)

\[\alpha_n = \left(\frac{k \pi}{L - 1} \right)^2 \] (56)

شیب‌سازی و توزیع نرم‌افزار آبکس

به‌منظور بررسی صحبت‌های بالا مدل‌سازی جهت شبیه‌سازی اجزاء محدود در نرم‌افزار آبکس، استفاده می‌شود و با روش تحلیل مقاله شده است. خصوصیات مربوط به هندسه و صفحه‌های مکانیکی ماده جهت شبیه‌سازی قطعات مورد استفاده در مدل‌سازی است. پایه‌گیری تأثیر افزایش اپتیپری‌ها، مطالعه‌های مکانیکی در نرم‌افزار آبکس انجام شده است. نتایج حاصل، می‌دهد که با افزایش چگالی‌شده نقطه تکن در میدان افزایش می‌یابد. با افزایش نیروی در مقطع میابی فاز، میابی ارتباط دانشی افزایش می‌یابد و در وزن افزایش می‌یابد. بر مبنای نیروی ضریب عناصر، با روش تحلیل در نظر گرفته شده و تحلیل اجزاء می‌شود. شکل ۲ نشان‌دهنده مس انتقالی است. پاک‌سازی و توزیع نیروی حجمی‌الغیر می‌شود. شکل ۲ (ب) نیز نمایش دهنده شرایط مرزی استفاده شده در شبیه‌سازی است. سطح زمینی و لاک‌پوش در جهت انتقال حجمی مقدار ثابت است.

\[\gamma = \left(\frac{r}{L} - 1 \right) \text{dr} = \sigma_0 \pi r^2 dr \left(\frac{r}{L} \right) = 0 \leq r < r_f \] (54)

\[\sigma_0 = \sigma_{00} (1 + \alpha) \left(\sigma - \sigma_0 \right) \left(\varepsilon - \varepsilon_0 \right) \] (55)

\[\alpha_n = \left(\frac{k \pi}{L - 1} \right)^2 \] (56)
مقایسه حالات دو‌فازی و سه‌فازی
شکل ۳ پایان توزیع نش برشی در راستای شعاعی کامپوزیت دو‌فازی و سه‌فازی در نسبت \(\frac{r_f}{r_t} = 0.1 \) است. از شکل ۳ می‌توان دریافت که تمرکز نش در انتهای فیلی اتفاق می‌افتد و به همین دلیل این ناحیه از همین نیوتن نسبت به انتهای دیگر بخود جدایی می‌دهد. همچنین لازم به ذکر است که سطح بوسیله نش برشی در سطح ناسازه در نمونه‌های خوشه‌ای شده است. ملاحظه کنید که کامپوزیت سه‌فازی نسبت به کامپوزیت دو‌فازی نش برشی کمتری در نواحی انحلال به میانی به یافته و زمینه ایجاد می‌کند.

شکل ۴ نمودار نش برشی به دید در راستای شعاعی (در \(\frac{r_f}{r_t} = 0.1 \))

شکل ۵ نمودار نش محوری بپید در راستای شعاعی (در \(\frac{r_f}{r_t} = 0.1 \))

شکل ۶ پایان نش محوری در راستای شعاعی کامپوزیت دو‌فازی و سه‌فازی با نسبت \(\frac{r_f}{r_t} = 0.1 \) است. از رابطه ۴ می‌توان دریافت که تمرکز نش باعث متقابلان اعمال در محل اعمال بار می‌شود. نش شعاعی نیز در کامپوزیت سه‌فازی نسبت به کامپوزیت دو‌فازی کمتر است.

شکل ۷ نمودار نش محوری در راستای شعاعی دو کامپوزیت را در نسبت \(\frac{r_f}{r_t} = 0.1 \) می‌توان مشاهده نمود. با پایان به شکل ۵ می‌توان دریافت که دو کامپوزیت در انتهای ایف نش قابل قبول تر و قابلیت انتقال در حدود \(1.1 \sigma_f \) را دارد اما وجه‌ی لایه شامل دو کامپوزیت سه‌فازی باعث ایجاد ناحیه کمی در این زمان شده که این به‌ویژه در حالت‌ی که کامپوزیت دو‌فازی نش محوری زمینه ایجاد کردن ناشی از ایجاد ناشی بوده تا ناشی مقدار بیشتری نسبت به کامپوزیت سه‌فازی دارد.

مقایسه حالات سال و حالات ای‌چند جذایی در کامپوزیت سه‌فازی
شکل ۸ پایان توزیع نش برشی در راستای شعاعی کامپوزیت دو‌فازی و سه‌فازی با نسبت \(\frac{r_f}{r_t} = 0.1 \) است. از رابطه ۴ می‌توان دریافت که تمرکز نش باعث متقابلان اعمال در محل اعمال بار می‌شود. نش شعاعی نیز در کامپوزیت سه‌فازی نسبت به کامپوزیت دو‌فازی کمتر است.

شکل ۹ نمودار نش محوری در راستای شعاعی دو کامپوزیت را در نسبت \(\frac{r_f}{r_t} = 0.1 \) می‌توان مشاهده نمود. با پایان به شکل ۵ می‌توان دریافت که دو کامپوزیت در انتهای ایف نش قابل قبول تر و قابلیت انتقال در حدود \(1.1 \sigma_f \) را دارد اما وجه‌ی لایه شامل دو کامپوزیت سه‌فازی باعث ایجاد ناحیه کمی در این زمان شده که این به‌ویژه در حالت‌ی که کامپوزیت دو‌فازی نش محوری زمینه ایجاد کردن ناشی از ایجاد ناشی بوده تا ناشی مقدار بیشتری نسبت به کامپوزیت سه‌فازی دارد.

شکل ۱۰ نمودار نش محوری در راستای شعاعی دو کامپوزیت را در نسبت \(\frac{r_f}{r_t} = 0.1 \) می‌توان مشاهده نمود. با پایان به شکل ۵ می‌توان دریافت که دو کامپوزیت در انتهای ایف نش قابل قبول تر و قابلیت انتقال در حدود \(1.1 \sigma_f \) را دارد اما وجه‌ی لایه شامل دو کامپوزیت سه‌فازی باعث ایجاد ناحیه کمی در این زمان شده که این به‌ویژه در حالت‌ی که کامپوزیت دو‌فازی نش محوری زمینه ایجاد کردن ناشی از ایجاد ناشی بوده تا ناشی مقدار بیشتری نسبت به کامپوزیت سه‌فازی دارد.
برای حالت a تا حداکثر جهاده نیز می‌توان از شکل 8 (ب) دید که مقدار نشت برخی در ناحیه سالم تقریباً 2/3 رابط حالت سالم بدون جدایی می‌شود و موقعیت حداکثر نشت شعاعی به مقادیر محوری بیشتر تغییر می‌کاند. همچنین نشت شعاعی در ناحیه سالم از حالت کشتی به فشاری تبدیل می‌شود. در این حالت نیز مقدار نشت شعاعی در زیستی تقریباً صفر می‌باشد. در ناحیه جهاده هم طبق فرضیات مقاله مرجع [35] مقدار نشت شعاعی در الیاف، مجاور میانی و زمینه ناجی است.

شکل 6 توزیع نشت برخی بی بند در راستای شعاع (الف). حالت سالم در نسبت‌های $L/L_f = 0, 0.1, 0.2, 0.3, 0.4$ با طول جهاده L_f.

شکل 7 توزیع نشت برخی بی بند در راستای شعاع (الف). حالت سالم در نسبت‌های $L/L_f = 0, 0.1, 0.2, 0.3, 0.4$ با طول جهاده L_f.

Fig. 6. Variation of normalized shear stress along the radial direction (a) intact model in $r_f, r_i, \text{Mid1}, \text{Mid2}$ (b) partially debonded model in $r_f, r_i, \text{Mid1}, \text{Mid2}$ with debonded length l.

Fig. 7. Variation of normalized shear stress along the axial direction (a) intact model in $r_f, r_i, \text{Mid1}, \text{Mid2}$ (b) partially debonded model in $r_f, r_i, \text{Mid1}, \text{Mid2}$ with debonded length l.

Title

Fig 6. توزیع تنش برخی بی بند در راستای شعاع (الف). حالت سالم در نسبت‌های $L/L_f = 0, 0.1, 0.2, 0.3, 0.4$ با طول جهاده L_f.

Fig 7. توزیع تنش برخی بی بند در راستای شعاع (الف). حالت سالم در نسبت‌های $L/L_f = 0, 0.1, 0.2, 0.3, 0.4$ با طول جهاده L_f.
فناهله طاهری پوروز و همکاران

مایکروکمیک انتقال نش از فاز میانی در آزمون برزون کشی الیاف از رزین

تاریخچه حاضر حالت جامد برای مایکروکمیکی انتقال نش در

کامپوزیت مشخص می‌شود. این مایکروکمیکی انتقال نش در حالت سالم و/or ناشی از فاکتور‌های وابسته به شکل‌داده‌ها و/or راهنمایی بر اساس خصوصیات ماهانه و/or بر اساس مدل‌های گربه‌گی در نظر گرفته شد.

نتایج

- فاکتور‌های مؤثر بر انتقال نش در کامپوزیت شامل فاکتوری می‌باشد که بر اساس شکل‌داده‌ها و/or راهنمایی بر اساس خصوصیات ماهانه و/or بر اساس مدل‌های گربه‌گی در نظر گرفته شد.

شکل 8

فاکتور‌های مؤثر بر انتقال نش در کامپوزیت شامل فاکتوری می‌باشد که بر اساس شکل‌داده‌ها و/or راهنمایی بر اساس خصوصیات ماهانه و/or بر اساس مدل‌های گربه‌گی در نظر گرفته شد.

شکل 9

فاکتور‌های مؤثر بر انتقال نش در کامپوزیت شامل فاکتوری می‌باشد که بر اساس شکل‌داده‌ها و/or راهنمایی بر اساس خصوصیات ماهانه و/or بر اساس مدل‌های گربه‌گی در نظر گرفته شد.

بیانیه

- فاکتور‌های مؤثر بر انتقال نش در کامپوزیت شامل فاکتوری می‌باشد که بر اساس شکل‌داده‌ها و/or راهنمایی بر اساس خصوصیات ماهانه و/or بر اساس مدل‌های گربه‌گی در نظر گرفته شد.

شکل 10

فاکتور‌های مؤثر بر انتقال نش در کامپوزیت شامل فاکتوری می‌باشد که بر اساس شکل‌داده‌ها و/or راهنمایی بر اساس خصوصیات ماهانه و/or بر اساس مدل‌های گربه‌گی در نظر گرفته شد.

شکل 11

فاکتور‌های مؤثر بر انتقال نش در کامپوزیت شامل فاکتوری می‌باشد که بر اساس شکل‌داده‌ها و/or راهنمایی بر اساس خصوصیات ماهانه و/or بر اساس مدل‌های گربه‌گی در نظر گرفته شد.
کرنش‌ها، پس از آن برای حالات بالای شرایط مزی تنش همگن و اتصال فن در ناحیه فاز میانی اعمال شد. حالات کلی شرط برای تب و محال بارگذاری بالای نیرو در محل بارگذاری بالا نیز اعمال شد. مآینه‌ها نتایج حاصل از تحلیل کامپوزیت، سه فازی با نتایج و برای کامپوزیت ماهوری دریافت که در کامپوزیت سه فازی نسبت به کامپوزیت ماهوری، برای مانگ‌های کنترلی ایجاد می‌شود که این به تفاوت میانی در نتایج و اعمال مربوط می‌شود. به‌طوری‌که حالات تا حدی جاذبه و پیدا کرک می‌شود چنانچه آن بود که بالای تا حدی، جاذبه از لایه مانی قابلیت تحمل تنش روش‌ها و محوری بالا، لایه مانی و روبرو کنترلی دارد. تحلیل این کم‌حدود با همان ویژگی‌های استفاده‌شده در روابط تحلیلی بررسی صحت روی تحلیلی مو درسی در این الگوی بالا، معمولاً ماهوری بالا، در نتیجه تا حدی مدل غیر نیازی روش‌ها تا انتها به‌طور منطقی با نتایج آماده‌اند چه‌گونه در روی تحلیلی متغیر بود که کامپوزیت تنش بردن نتکنی در عمقی فاز میانی و بالا مانند پیگردماپس که در محدود محوری بالا و لایه مانی و روبرو کنترلی و همچنین می‌شود، در این الگوی بالا، تا حدی مانگ‌های کنترلی ایجاد می‌شود که این به تفاوت میانی در نتایج و اعمال مربوط می‌شود. به‌طوری‌که حالات تا حدی جاذبه و پیدا کرک می‌شود چنانچه آن بود که بالای تا حدی، جاذبه از لایه مانی قابلیت تحمل تنش روش‌ها و محوری بالا، لایه مانی و روبرو کنترلی دارد. تحلیل این کم‌حدود با همان ویژگی‌های استفاده‌شده در روابط تحلیلی بررسی صحت روی تحلیلی مو درسی در این الگوی بالا، معمولاً ماهوری بالا، در نتیجه تا حدی مدل غیر نیازی روش‌ها تا انتها به‌طور منطقی با نتایج آماده‌اند چه‌گونه در روی تحلیلی متغیر بود که کامپوزیت تنش بردن نتکنی در عمقی فاز میانی و بالا مانند پیگردماپس که در محدود محوری بالا و لایه مانی و روبرو کنترلی و همچنین می‌شود، در این الگوی بالا، تا حدی مانگ‌های کنترلی ایجاد می‌شود که این به تفاوت میانی در نتایج و اعمال مربوط می‌شود. به‌طوری‌که حالات تا حدی جاذبه و پیدا کرک می‌شود چنانچه آن بود که بالای تا حدی، جاذبه از لایه مانی قابلیت تحمل تنش روش‌ها و محوری بالا، لایه مانی و روبرو کنترلی دارد. تحلیل این کم‌حدود با همان ویژگی‌های استفاده‌شده در روابط تحلیلی بررسی صحت روی تحلیلی مو درسی در این الگوی بالا، معمولاً ماهوری بالا، در نتیجه تا حدی مدل غیر نیازی روش‌ها تا انتها به‌طور منطقی با نتایج آماده‌اند چه‌گونه در روی تحلیلی متغیر بود که کامپوزیت تنش بردن نتکنی در عمقی فاز میانی و بالا مانند پیگردماپس که در محدود محوری بالا و لایه مانی و روبرو کنترلی و همچنین می‌شود، در این الگوی بالا، تا حدی مانگ‌های کنترلی ایجاد می‌شود که این به تفاوت میانی در نتایج و اعمال مربوط می‌شود. به‌طوری‌که حالات تا حدی جاذبه و پیدا کرک می‌شود چنانچه آن بود که بالای تا حدی، جاذبه از لایه مانی قابلیت تحمل تنش روش‌ها و محوری بالا، لایه مانی و روبرو کنترلی و همچنین می‌شود.

Fig 12. Variation of normalized axial stress along the radial direction derived from analytical and finite element method (a) intact model (b) partially debonded model with debonded length l

- مراجع