نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی عمران، گرایش مهندسی و مدیریت ساخت، گروه عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز.

2 استادیار دانشکدۀ فنی و مهندسی، گروه عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز

3 استادیار دانشکدۀ فنی و مهندسی، گروه عمران، واحد مراغه، دانشگاه آزاد اسلامی، مراغه.

4 دانشیار دانشکدۀ فنی و مهندسی، گروه عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز.

5 استادیار دانشکدۀ فنی و مهندسی، گروه عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز.

چکیده

در تحقیق حاضر با توسعه مدل المان محدود به بررسی رفتار بیرون کشیدگی میلگرد فولادی آجدار از بتن فوق‌توانمند الیافی پرداخته شد. مدل المان محدود چندمقیاسی به صورت سه فاز مجزا شامل بتن فوق‌توانمند به صورت ماده ایزوتروپ، میکروالیاف فولادی و میلگرد شبیه‌سازی شد. به منظور در نظر گرفتن فرضیات واقع‌بینانه‌تر، برای اولین بار آج‌های میلگرد نیز شبیه‌سازی شده و اندرکنش بین میلگرد و الیاف با بتن توسط مدل ناحیه تماس چسبنده اعمال شده است. پارامترهای مدل رفتاری ناحیه تماس چسبنده با کالیبره کردن نتایج مدل المان محدود و نتایج تست تجربی تعیین شد. در نهایت، پس از صحت‌سنجی نتایج المان محدود چندمقیاسی، بیشینه نیروی بیرون کشیدگی، جابجایی متناظر و کار انجام لازم برای بیرون کشیدگی میلگرد با استفاده از منحنی‌های نیرو-لغزش تعیین شد. عواملی نظیر درصد حجمی میکروالیاف فولادی، طول مهارشدگی و قطر میلگرد، بر مقاومت پیوستگی میلگرد و بتن فوق‌توانمند الیافی ارزیابی گردید. نتایج نشان می‌دهد که طول مهارشدگی تأثیر قابل ملاحظه‌ای بر رفتار پیوستگی میلگرد داشته و با افزایش طول مهارشدگی، نیروی بیرون کشیدگی نیز بیشتر می‌شود. با توجه به نتایج مشاهده می‌شود برای میلگرد با قطر 20 mm، با افزایش میزان الیاف از 0% به 2% نیروی بیرون کشیدگی و کار بیرون کشیدگی به ترتیب در حدود 30% و 22% افزایش می‌یابد.‏

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of bonding behavior of steel ribbed rebar embedded in ultra-high performance concrete reinforced with steel microfiber using multi-scale finite element method

نویسندگان [English]

  • Mohammad Reza Aghdami Sani 1
  • Adel Ferdousi 2
  • Masoud Pourbaba 3
  • Yousef Zandi 4
  • Seyed Saeed Mirrezaei 5

1 Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

2 Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

3 Department of Civil Engineering, Maragheh Branch, Islamic Azad University, Maragheh, Iran.

4 Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

5 Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

چکیده [English]

In this study, by developing the finite element model, the pull-out behavior of ribbed steel rebar from ultra-high performance fiber reinforced concrete was investigated. For this purpose, the multi-scale finite element model was simulated in three separate phases, including ultra-high performance concrete in the form of isotropic material, steel microfibers and ribbed rebar. In order to consider more realistic assumptions, Rib pattern of rebar were simulated for the first time and the interaction between concrete with rebar and fibers was modeled by using the adhesive contact zone model. The constant parameters of the adhesive contact zone model were determined by calibrating the results of the finite element model and those of the experimental pull-out test. Finally, after validating the multi-scale finite element results, the maximum pull-out force, the corresponding displacement and the work required for the rebar pull-out were determined using the force-slip curves. Effective parameters such as bond length and rebar diameter, and the volume percentage of steel microfibers, on the bond strength were evaluated. The results show that the bond length has a significant effect on the bonding behavior of the rebar and with increasing the bond length the pull-out force also increases. According to the results, for rebar with a diameter of 20 mm, by increasing the amount of fibers volume from 0 to 2%, the pull-out force and the work increase by about 30% and 22%, respectively.

کلیدواژه‌ها [English]

  • Bond behavior
  • Ultra high performance concrete
  • Multi-scale finite element
  • Steel microfibers
  • Pull-out force
[1] Ghaderi, M., Ghaffarzadeh, H. and Maleki, V. A., “Investigation of Vibration and Stability of Cracked Columns under Axial Load“ Earthquakes and Structures, Vol. 9, No. 6, pp. 1181-1192, 2015.
[2] Makul, N., “Principles of Cement and Concrete Composites“, Springer Nature, 2021 .
[3] Gencel, O., Karadag, O., Oren, O. H. and Bilir, T., “Steel Slag and Its Applications in Cement and Concrete Technology: A Review“ Construction and Building Materials, Vol. 283, pp. 34-56, 2021.
[4] Rezaee, M., Vahid A. Maleki. "An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science Vol. 229, No. 4, pp. 644-650, 2015.
[5] Wang, L., He, T., Zhou, Y., Tang, S., Tan, J., Liu, Z. and Su, J., “The Influence of Fiber Type and Length on the Cracking Resistance, Durability and Pore Structure of Face Slab Concrete“ Construction and Building Materials, Vol. 282, pp. 34-56, 2021.
[6] Ghaderi, M., Maleki, V. A. and Andalibi, K., “Retrofitting of Unreinforced Masonry Walls under Blast Loading by Frp and Spray on Polyurea“ Cumhuriyet Science Journal, Vol. 36, No. 4, pp. 462-477, 2015.
[7] Vahidi Pashaki, Pooyan, Milad Pouya, Vahid A. Maleki. "High-speed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232, No. 11, pp. 1927-1936, 2018.
[8] Wang, J., Yu, R., Xu, W., Hu, C., Shui, Z., Qian, D., Leng, Y., Liu, K., Hou, D. and Wang, X., “A Novel Design of Low Carbon Footprint Ultra-High Performance Concrete (UHPC) Based on
Full Scale Recycling of Gold Tailings“ Construction and Building Materials, Vol. 304, pp. 78-95, 2021.
[9] Guan, D., Chen, Z., Liu, J., Lin, Z. and Guo, Z., “Seismic Performance of Precast Concrete Columns with Prefabricated Uhpc Jackets in Plastic Hinge Zone“ Engineering Structures, Vol. 245, pp. 45-67, 2021.
[10] Hung, C.-C., El-Tawil, S. and Chao, S.-H., “A Review of Developments and Challenges for Uhpc in Structural Engineering: Behavior, Analysis, and Design“ Journal of Structural Engineering, Vol. 147, No .9, pp. 12-42, 2021.
[11] Ashrafian, A., Berenjian, J. and Asghari Tilaki, F., “Optimization of Mixture Proportions of Self-Compacted Fiber Reinforced Concrete Incorporating Polypropylene Using Genetic and Crow Search Algorithms“ Modares Civil Engineering journal, Vol. 20, No. 3, pp. 1-12, 2020.
[12] Hosseini, M. and Fakhri, D., “Experimental Study of Effect of Glass and Polypropylene Hybrid Fibers on the Physical and Mechanical Properties of Concrete and Cement Mortar“ Journal of Mineral Resources Engineering ,Vol. 34, pp. 34-56, 2021.
[13] adlparvar, m., Taghavi Parsa, M. H. and Mahmoodabadi, M., “Study and Design of Prefabricated Fiber Concrete Segments of Metro Tunnels Using with the Beam-Spring Method“ Road, Vol. 134, pp. 45-67, 2020.
[14] Gholhaki, M., Pachideh, G. and Rezayfar ,O., “An Experimental Study on Mechanical Properties of Concrete Containing Steel and Polypropylene Fibers at High Temperatures“ Journal of Structural and Construction Engineering, Vol. 4, No. 3, pp. 167-179, 2017.
[15] Esmaeili, J., Sharifi, I., Andalibi, K .and Kasaei, J., “Effect of Different Matrix Compositions and Micro Steel Fibers on Tensile Behavior of Textile Reinforced Concrete“ in Proceeding of IOP Publishing, pp. 012031 .
[16] Kamani, R., Kamali Dolatabadi, M., Asghharian Jeddi, A. A. and Nasrollahzadeh, K., “Increasing the Efficiency of Carbon Fiber Bundles in Reinforcing Fine Grained Concrete: An Experimental Study of Flexural Bearing Capacity“ Journal of Science and Technology of Composites, Vol. 6, No. 2, pp. 310-318, 2019.
[17] Sezari, M. and Ashkezari, G. D., “Investigation of Impact Behavior of High Strength Concrete and Ultra-High Performance Steel Fiber Reinforced Concrete under Impact of Projectile“ Scientific Journal of Advanced Defense Science and Technology Vol. 23, No. 9, pp. 23-45, 2018.
[18] Aram Partan, M., Eskandari, H., Lezgy-Nazargah, M. and Gharouni Nik, M., “Evaluating the Effect of Forta and Polypropylene Fibers on Compressive Strength, Ductility and Energy Absorption of Cylindrical Concrete Specimens“ Concrete Research, Vol. 14, No .2, pp. 53-67, 2021.
[19] sabbaghian, m. and Kheyroddin, A., “Experimental Investigation of the Effect of Fiber on Mechanical Properties and the Age of High-Performance Fiber Reinforced Cement Composites" Concrete Research, Vol. 12, No. 4, pp. 53-68, 2019.
[20] Hajforoush, M., Kheyroddin, A. and Rezaifar, O., “The Effect of Magnetic Field on Bond Strength between Reinforcing Steel Bar and Steel Fiber Reinforced Concrete by Means of Pull-out Test“ Concrete Research, Vol. 13, No. 4, pp. 5-16, 2020.
[21] Kalthoff, M. and Raupach, M., “Pull-out Behaviour of Threaded Anchors in Fibre Reinforced Ordinary Concrete and Uhpc for Machine Tool Constructions“ Journal of Building Engineering, Vol. 33, pp. 89-96, 2021.
[22] Khaksefidi, S., Ghalehnovi, M. and de Brito, J “ ,.Bond Behaviour of High-Strength Steel Rebars in Normal (NSC) and Ultra-High Performance Concrete (UHPC)“ Journal of Building Engineering, Vol. 33, pp. 34-57, 2021.
[23] Zhou, Z. and Qiao, P., “Bond Behavior of Epoxy-Coated Rebar in Ultra-High Performance Concrete“ Construction and Building Materials, Vol. 182, pp. 406-417, 2018.
[24] Khani, N., Yildiz, M. and Koc, B., “Elastic Properties of Coiled Carbon Nanotube Reinforced Nanocomposite: A Finite Element Study“ Materials & Design, Vol .109, pp. 123-132, 2016.
[25] Esmaeili, J. and Andalibia, K., “Development of 3d Meso-Scale Finite Element Model to Study the Mechanical Behavior of Steel Microfiber-Reinforced Polymer Concrete“ Computers and Concrete, Vol. 24, No. 5, pp. 413-422, 2019.
[26] Karimzadeh, F., Ziaei-Rad, S. and Adibi, S., “Modeling Considerations and Material Properties Evaluation in Analysis of Carbon Nano-Tubes Composite“ Metallurgical and Materials Transactions B, Vol. 38, No. 4, pp. 695-705, 2007.
[27] Ayatollahi, M., Shadlou, S. and Shokrieh, M., “Multiscale Modeling for Mechanical Properties of Carbon Nanotube Reinforced Nanocomposites Subjected to Different Types of
Loading“ Composite Structures, Vol. 93, No. 9, pp. 2250-2259, 2011
[28] Budhe, S., Banea, M., De Barros, S. and Da Silva, L., “An Updated Review of Adhesively Bonded Joints in Composite Materials“ International Journal of Adhesion and Adhesives, Vol. 72, pp. 30-42, 2017.
[29] Velasco, M., Graciani, E., Távara, L., Correa, E. and París, F., “Bem Multiscale Modelling Involving Micromechanical Damage in Fibrous Composites“ Engineering Analysis with Boundary Elements, Vol. 93, pp. 1-9, 2018.
[30] París, F., Correa, E. and Mantič, V., “Micromechanical Evidences on Interfibre Failure of Composites“ in: The Structural Integrity of Carbon Fiber Composites, Eds., pp. 359-390: Springer, 2017.
[31] Vahidi Pashaki, P., Pouya, M. and Maleki, V. A., “High-Speed Cryogenic Machining of the Carbon Nanotube Reinforced Nanocomposites: Finite Element Analysis and Simulation“ Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232, No. 11, pp. 1927-1936, 2018.
[32] Esmaeili, J., Andalibi, K., Gencel, O., Maleki, F. K. and Maleki, V. A., “Pull-out and Bond-Slip Performance of Steel Fibers with Various Ends Shapes Embedded in Polymer-Modified Concrete“ Construction and Building Materials, Vol. 271, pp. 121-131, 2021.
[33] Bouhala, L., Makradi, A., Belouettar, S., Younes, A. and Natarajan, S., “An Xfem/Czm Based Inverse Method for Identification of Composite Failure Parameters" Computers & Structures, Vol. 153, pp. 91-97, 2015.
[34] Ren, G. M., Wu, H., Fang, Q., Liu, J. Z., "Effects of steel fiber content and type on static mechanical properties of UHPCC" Construction and Building Materials, Vol. 163, pp. 826-839, 2018.
[35] RILEM-CEB-FIP-RC6., Recommendation Rc 6: Bond Test Reinforcement Steel. 2. Pull-out Test, Georgi Publishing Company Paris, 1983 .
[36] Carvalho, E. P., Ferreira, E. G., Cunha, J. C. d., Rodrigues, C. d. S. and Maia, N. d. S., “Experimental Investigation of Steel-Concrete Bond for Thin Reinforcing Bars“ Latin American Journal of Solids and Structures, Vol. 14, pp. 1932-1951, 2017.
[37] Caro, S., Masad, E., Bhasin, A., Little, D .and Sanchez-Silva, M., “Probabilistic Modeling of the Effect of Air Voids on the Mechanical Performance of Asphalt Mixtures Subjected to Moisture Diffusion“ Asphalt Paving Technology-Proceedings Association of Asphalt Technologists, Vol. 79, pp. 221, 2010.