نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، دانشگاه شهید چمران اهواز، اهواز

2 استادیار، مهندسی مکانیک، دانشگاه شهید چمران اهواز، اهواز.

چکیده

کاربرد لوله‎ های چندلایه به دلیل مزیت‌های مکانیکی و شیمیایی آن‌ها به‌عنوان جایگزین لوله‎ های همگن جهت انتقال نفت، گاز و مواد پتروشیمی در حال افزایش است. جهت جلوگیری از مسدود شدن خطوط انتقال و زیان وارده از آن می‎ بایست که بازرسی ها و آزمونهای غیر مخرب مانند آزمونهای فراصوت برای اطمینان از صحت کارکرد آن‎ها به‌ صورت مداوم انجام گیرند. ازاین‌رو در این تحقیق، ابتدا معادلات انتشار موج پیچشی در لوله چندلایه مورد بررسی قرار گرفته و روابط میدان‎ های جابجایی و تنش های دینامیکی در لوله چندلایه استخراج شده است، سپس نمودارهای دیسپرژن و سرعت گروه برای لوله‎ چندلایه با توجه به شرایط مرزی مسئله رسم شده است. همچنین، انتشار موج پیچشی در لوله چندلایه با استفاده از روش اجزاء محدود در نرم‌افزار ABAQUS شبیه سازی شده است. با مقایسه نتایج تحلیلی و شبیه سازی عددی مشاهده می ‎شود که نتایج کامل با یکدیگر تطابق داشته و مدل‎سازی به‌درستی انجام گرفته است. در انتها نیز تأثیر عوامل مؤثر بر انتشار موج پیچشی در لوله های دولایه و سه لایه بررسی شده است. نتایج به دست آمده نشان می‎ دهند که ضخامت لایه ها، ترتیب لایه ها و جنس تشکیل دهنده لایه های لوله بر سرعت انتشار موج پیچشی در لوله های چندلایه تأثیرگذار است.

کلیدواژه‌ها

عنوان مقاله [English]

Inspection of Multilayer Pipes Using Torsional Guided Waves

نویسندگان [English]

  • Mohammad Pourmansouri 1
  • Reza Mosalmani 2
  • Amin Yaghootian 2
  • Afshin Ghanbarzadeh 2

1 Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

چکیده [English]

The use of multilayer pipes has increased recently thanks to their superior mechanical and chemical properties as a replacement of homogeneous single-layer pipes. Therefore, applicable inspections and non-destructive tests for multilayer pipes should be investigated. In this study, the governing equations of torsional wave propagation in the multilayer pipe were initially developed, and the relations between the displacement fields and dynamic stresses in the multilayer pipe were calculated. Then, the dispersion curves and group velocity for the multilayer pipe are plotted according to the boundary conditions. The torsional wave propagation in the multilayer pipe was also simulated using the finite element method via ABAQUS software. By comparing the analytical results and the numerical simulations, a complete agreement was observed between the results. Finally, the influence of effective parameters on torsional wave propagation in two- and three-layer pipes was investigated. The obtained results showed how the thickness, lay-up, and mechanical properties of the layers could affect the velocity of torsional wave propagation in the multilayer pipes.

کلیدواژه‌ها [English]

  • Torsional guided waves
  • Wave propagation
  • Multilayer pipes
  • Finite element method
  • Dispersion curve
[1]   Rose, J. L., “Ultrasonic Guided Waves in Solid Media,”  Cambridge university press, 2014.
[2]   Tan, J. J., Wang, X., Guo, N. and  Ho, J. H., “Parametric Study of Defect Detection in Pipes with Bend Using Guided Ultrasonic Waves,” in MATEC Web of Conferences, Vol. 71, pp. 2003, 2016. 
[3]   Gazis, D. C., “Three‐Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of Acoustical Society of America, Vol. 31, No. 5, pp. 568-573, 1959.
[4]   Gazis, D. C., “Three‐Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of Acoustical Society of America, Vol. 31, No. 5, pp. 573-578, 1959.
[5]   Liu, G. and  Qu, J., “Guided Circumferential Waves in a Circular Annulus,” Applied Mechanics, Vol. 65, No. 2, pp. 424-430, 1998.
[6]   Muggleton, J. M., Kalkowski, M., Gao, Y. and Rustighi, E., “A Theoretical Study of the Fundamental Torsional Wave in Buried Pipes for Pipeline Condition Assessment and Monitoring,” Journal of Sound and Vibration, Vol. 37 , pp. 155-171, 2016.
[7]   Lai, J. L., Dowell, E. H. and  Tauchert, T. R., “Propagation of Harmonic Waves in a Composite Elastic Cylinder,” Journal of Acoustical Society of America, Vol. 49, No. 2, pp. 220-228, 1971.
[8]   Armenàkas, A. E., “Torsional Waves in Composite Rods,” Journal of Acoustical Society of America, Vol. 38, No. 3, pp. 439-446, 1965.
[9]   Whittier, J. S. and  Jones, J. P., “Axially Symmetric Wave Propagation in a Two-Layered Cylinder,” International Journal of Solids and Structures, Vol. 3, No. 4, pp. 657-675, 1967.
[10] Sun, Z. and  Du, H., “Estimation of the Dispersion Curves of Pipe Guided Waves by Field Measurement,” Mechanical Systems and Signal Processing, Vol. 140, pp. 106693, 2020.
[11] Akbarov, S., Kepceler, T. and  Egilmez, M. M., “Torsional Wave Dispersion in a Finitely Pre-Strained Hollow Sandwich Circular Cylinder,” Journal of Sound and Vibration, Vol. 330, No. 18-19, pp. 4519-4537, 2011.
[12] Guz, A. N., “Elastic Waves in Bodies with Initial (Residual) Stresses,” International Applied Mechanics, Vol. 38, No. 1, pp. 23-59, 2002.
[13] Dean, M., “Torsional Wave Dispersion in a Composite Cylinder with a Functionally Graded Core and an Imperfect Interface,”  Thesis, The Ohio State University, USA, 2013.
[14] Hua, J. and  Rose, J., “Guided Wave Inspection Penetration Power in Viscoelastic Coated Pipes,” Insight - Non-Destructive Testing and Condition Monitoring, Vol. 52, no. 4, pp. 195-205, 2010.
[15] Luo, W., “Ultrasonic Guided Waves and Wave Scattering in Viscoelastic Coated Hollow Cylinders,” PhD Thesis, The Pennsylvania State University, USA, 2005.
[16] Mu, J., “Guided Wave Propagation and Focusing in Viscoelastic Multilayered Hollow Cylinders,” PhD Thesis, The Pennsylvania State University, USA, 2008.
[17] Castaings, M. and  Bacon, C., “Finite Element Modeling of Torsional Wave Modes Along Pipes with Absorbing Materials,” Journal of Acoustical Society of America, Vol. 119, No. 6, pp. 3741-3751, 2006.
[18] Chen, G., Katagiri, T., Song, H., Yusa, N. and  Hashizume, H., “Investigation of the Effect of a Bend on Pipe Inspection Using Microwave NDT,” NDT & E International, Vol. 110, pp. 102208, 2020.
[19] Alleyne, D. and  Cawley, P., “The Excitation of Lamb Waves in Pipes Using Dry-Coupled Piezoelectric Transducers” Journal of Nondestructive Evaluation, Vol. 15, No. 1, pp. 11-20, 1996.
[20] Kwun, H. and  Dynes, C. P., “Long-Range Guided Wave Inspection of Pipe Using Magnetostrictive Sensor Technology: The Feasibility of Defect Characterization,” Proceeding SPIE 3398, Nondestructive Evaluation of Utilities and Pipelines II, pp. 28-34, 1998.
[21] Liu, T., Pei, C., Cai, R., Li, Y. and  Chen, Z., “A Flexible and Noncontact Guided-Wave Transducer Based on Coils-Only EMAT for Pipe Inspection,” Sensors and Actuators A: Physical, Vol. 314, pp. 112213, 2020.
[22] Guo, S., Chen, S., Zhang, L., Liew, W. H. and  Yao, K., “Direct-Write Piezoelectric Ultrasonic Transducers for Pipe Structural Health Monitoring,” NDT & E International, Vol. 107, pp. 102131, 2019.
[23] Ditri, J. J., Rose, J. L. and  Pilarski, A., “Generation of Guided Waves in Hollow Cylinders by Wedge and Comb Type Transducers,”  Review of Progress in Quantitative Nondestructive Evaluation, Vol. 12, pp. 211-218, 1993.
[24] Quarry, M. J. and  Rose, J. L., “Multimode Guided Wave Inspection of Piping Using Comb Transducers,” Materials Evaluation, Vol. 57, No. 10, pp. 1089-1090, 1999.
[25] Miao, H., Huan, Q., Wang, Q. and  Li, F., “Excitation and Reception of Single Torsional Wave T (0, 1) Mode in Pipes Using Face-Shear D24 Piezoelectric Ring Array,” Smart Materials and Structures, Vol. 26, No. 2, pp. 025021, 2017.
[26] Zhu, W., “A Finite Element Analysis of the Time-Delay Periodic Ring Arrays for Guided Wave Generation and Reception in Hollow Cylinders,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 48, No. 5, pp. 1462-1470, 2001.
[27] Zhu, W., “An FEM Simulation for Guided Elastic Wave Generation and Reflection in Hollow Cylinders with Corrosion Defects,” Journal of Pressure Vessel Technology, Vol. 124, No. 1, pp. 108-117, 2002.
[28] Lowe, P. S., Lais, H., Paruchuri, V. and  Gan, T.-H., “Application of Ultrasonic Guided Waves for Inspection of High Density Polyethylene Pipe Systems,” Sensors, Vol. 20, No. 11, pp. 3184, 2020.
[29] Demma, A., Cawley, P. and  Lowe, M., “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” Journal of Acoustical Society of America, Vol. 114, No. 2, pp. 611-625, 2003.
[30] Furukawa, T. and  Komura, I., “Simulation and Visualization of Guided Wave Propagation by Large-Scale 3D FEM,” E-Journal of Advanced Maintenance, Vol. 3-3, pp. 92-101, 2011.
[31] Tan, J. J., Wang, X., Guo, N. and  Ho, J. H., “Parametric Study of Defect Detection in Pipes with Bend Using Guided Ultrasonic Waves,” The International Conference on Computing and Precision Engineering, pp.5, 2016.
[32] Zhang, X., Tang, Z., Lv, F. and  Yang, K., “Scattering of Torsional Flexural Guided Waves from Circular Holes and Crack-Like Defects in Hollow Cylinders,” NDT & E International, Vol. 89, pp. 56-66, 2017.
[33] Løvstad, A. and  Cawley, P., “The Reflection of the Fundamental Torsional Mode from Pit Clusters in Pipes,” NDT & E International, Vol. 46, pp. 83-93, 2012.
[34] Abramowitz, M. and  Stegun, I., “Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables Applied Mathematics Series,” Dover Publications, 1964.
[35] Dassault Systèmes, “Abaqus Analysis User's Guide,” Technical Report Abaqus 6.14 Documentation, Simulia Corp.,  2016.
[36] Gresil, M., Poohsai, A. and  Chandarana, N., “Guided Wave Propagation and Damage Detection in Composite Pipes Using Piezoelectric Sensors,” Procedia Engineering, Vol. 188, pp. 148-155, 2017.