نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشگاه شهید بهشتی، تهرا ن.

2 دانشیار، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران.

3 دانشیار، مهندسی مکانیک، دانشگاه علم و صنعت، تهران.

چکیده

در پژوهش‌های اخیر، استفاده از گرافن به دلیل تأثیر مثبت بر خواص کامپوزیت‌ها از جمله خواص مکانیکی، الکتریکی و حرارتی مورد توجه قرار گرفته است. در این پژوهش، خواص ریزساختاری و مکانیکی نانوکامپوزیت ریختگی آلومینیوم خالص تقویت شده با 0.5درصد وزنی گرافن با همزنی مکانیکی - الکترومغناطیسی و سپس اکستروژن داغ و نهایتا آنیل، در دو روشِ استفاده از آسیاب گلوله‌ای و بدون استفاده از آسیاب گلوله‌ای بررسی شد. با بکار بردن روش‌های همزنی مکانیکی و الکترومغناطیسی، ترکیب‌ دو نیروی برشی و حجمی، تلاطم بیشتری را در فلز مذاب ایجاد کرده که منجر به توزیع مناسب ذرات تقویت کننده، کاهش ساختارهای دندریتی و اصلاح اندازه دانه در طول انجماد می‌شود. مطالعات ریزساختاری نشان داد که در روش آسیاب گلوله‌ای توزیع نانو ذرات گرافن در فاز زمینه و کاهش اندازه دانه، نسبت به روش بدون آسیاب گلوله‌ای مطلوب‌تر می‌باشد. در روش آسیاب گلوله‌ای، سختی، استحکام کششی و استحکام فشاری به ترتیب 19.7، 142.8 و 11.7 درصد و در روش بدون آسیاب به ترتیب 9، 85.2 و 13.5 درصد نسبت به آلومینیوم خالص افزایش یافته است. تغییر طول در روش آسیاب گلوله‌ای 6.8 و در روش بدون آسیاب گلوله‌ای 35.4 درصد کاهش نشان می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Study of microstructure and investigation of mechanical properties of pure aluminum-graphene nanocomposite using ball mill method in casting process with mechanical and electromagnetic stirring

نویسندگان [English]

  • Zahra Azizi 1
  • Khosrow Rahmani 2
  • Fathollah Taheri-Behrooz 3

1 Mechanical and Energy Systems Engineering, Shahid Beheshti University, Tehran, Iran.

2 Mechanical and Energy Systems Engineering, Shahid Beheshti University, Tehran, Iran.

3 School of Mechanical Engineering, University of Science and Technology, Tehran, Iran.

چکیده [English]

In recent scientific studies, the use of graphene has been considered due to its positive effect on the properties of composites, including mechanical, electrical and thermal properties. In this research, the microstructural and mechanical properties of pure aluminum nanocomposite cast reinforced with 0.5 wt% graphene with mechanical-electromagnetic stirrer and then hot extrusion and finally annealing, in two methods of using ball milling and without using ball milling process, was investigated. By applying both mechanical and electromagnetic stirring techniques, combining both shear and body forces can cause more turbulence in the molten metal that lead to as well as distribute reinforcing particles, decreasing the dendritic structures and refining the grains during solidification. The microstructural studies showed that in the ball mill method, the distribution of graphene nanoparticles and reduce grain size in the matrix phase is significantly better than the non-ball mill method. Also, in the method of ball mill, hardness, tensile strength and compressive strength increased by 19.7, 142.8 and 11.7%, respectively, and in the method without mill, 9, 85.2 and 13.5%, respectively, compared to pure aluminum. The elongation decreased by 6.8% in the ball mill method and 35.4% in the non-ball mill method.

کلیدواژه‌ها [English]

  • Casting nanocomposite
  • Pure aluminum
  • Graphene
  • Ball Milling
  • Mechanical and Electromagnetic Stirring
[1]  Kumar A, Gulati V, Kumar P., “Parametric Effects on Formability of AA2024-O Aluminum Alloy Sheets in Single Point Incremental Forming”, Journal of Materials Research and Technology, Vol. 8, No.1, pp. 1461-1469, 2018.
[2]  Thakur A., “Fatigue Behavior and Fracture Mechanism of a Hot Rolled AA7020 Aluminum Alloy”, International Journal of Current Engineering and Technology, Vol. 3, pp. 401-404, 2019.
[3]  Kumar GV, Rao CSP, Selvaraj N., “Mechanical and Tribological Behavior of Particulate Reinforced Aluminium Metal Matrix Composites– a Review”, Journal of Minerals and Materials Characterization and Engineering, Vol. 10, No. 1, pp. 59-91, 2011.
[4]  Polat S, Sun Y, Cevik E., “Investigation of Wear and Corrosion Behavior of Graphene Nanoplatelet-Coated B4C Reinforced Al–Si Matrix Semi-Ceramic Hybrid Composites”, Journal of Composite Materials, Vol. 53, No. 25, pp. 3549-3565, 2019.
[5]  Rhee H, Whittington W.R, Oppedal A.L, Sherif A.R, King R.L, Kim H.J, Lee C., “Mechanical Properties of Novel Aluminum Metal Matrix Metallic Composites: Application to Overhead Conductors”, Journal of Materials and Design, Vol. 88, pp. 16–21, 2015.
[6]  Sauvage X, Bobruk E.V, Murashkin M.Y, Nasedkina Y, Enikeev N.A, Valiev R.Z., “Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys”, Journal of Acta Materialia, Vol. 98, pp. 355–366, 2015.
 [7] Yibin, X, Yoshita. T., “Thermal Conductivity of SiC Fine Particles Reinforced Al Alloy Matrix Composite with Dispersed Particle Size”, Journal of Applied Physics, Vol. 95, pp. 722-726, 2004.
[8]  Borgonovo. C, Apelian. D., “Manufacture of Aluminum Nanocomposites: A Critical Review”, Journal of Materials Science Forum, Vol. 678, pp. 1-22, 2011.
[9]  Yang. Y, Li. X, Lan. J., “Study on Bulk Aluminum Matrix Nano Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy”, Journal of Materials Science and Engineering A, Vol. 380, pp. 378-383, 2004.
[10] Miracle. D., “Metal Matrix Composites–From Science to Technological Significance”, Journal of Composites Science and Technology, Vol. 65, pp. 2526-2540, 2005.
[11] Porwal. H, Grasso. S, Reece, M. J., “Review of Graphene–Ceramic Matrix Composites”, Journal of Advances in Applied Ceramics, Vol. 112, No. 8, pp. 443–454, 2013.
[12] Tjong. S.C., “Recent Progress in The Development and Properties of Novel Metal Matrix Nanocomposites Reinforced with Carbon Nanotubes and Graphene Nanosheets", Journal of Materials Science and Engineering: R: Reports, Vol. 74, No. 10, pp. 281–350, 2013.
[13] Hu. Z, Tong. G, Lin. D, Chen. C, Guo. H, Xu. J, Zhou. L., "Graphene-Reinforced Metal Matrix Nanocomposites – a Review"., Journal of Materials Science and Technology, Vol. 32, No. 9, pp. 930–953, 2016.
[14] Moghadam. A.D, Omrani. E, Menezes. P.L, Rohatgi. P.K., "Mechanical and Tribological Properties of Self-lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene – A Review", Journal of Composites Part B: Engineering, Vol. 77, pp. 402–420, 2015.
 [15] Novoselov. K.S, Geim. A.K, Morozov. S.V, Jiang. D, Zhang. Y, Dubonos. S.V, Grigorieva. I.V, Firsov. A. A., “Electric Field Effect in Atomically Thin Carbon Films”, Journal of Science, Vol. 306, No. 5696, pp. 666–669, 2004.
[16] Balandin. A.A, Ghosh. S, Bao. W, Calizo. I, Teweldebrhan. D, Miao. F, Lau. C.N., “Superior Thermal Conductivity of Single layer Graphene”, Journal of Nano Letters, Vol.  8, No. 3, pp. 902–907, 2008.
[17] Lee.C, Wei. X, Kysar. J. W, Hone. J., “Measurement of The Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Journal of Science, Vol. 321, No. 5887, pp. 385–388, 2008.
[18] Lee.C, Wei. X, Li. Q, Kysar. J. W, Hone. J., “Elastic and Frictional Properties of Graphene", Journal of Physica Status Solidi (B), Vol. 246, No. 11–12, pp. 2562–2567, 2009.
[19] Rafiee. M. A, Rafiee. J, Wang. Z, Song. H, Yu. Z. Z, Koratkar. N.,” Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content”, Journal of ACS Nano, Vol. 3, No. 12, pp. 3884–3890,2009.
[20] Bartolucci. S.F, Paras. J, Rafiee. M. A, Rafiee. J, Lee. S, Kapoor. D.,”Graphene–Aluminum Nanocomposites”, Journal of Materials Science and Engineering: A, Vol. 528, No.  27, pp. 7933–7937, 2011.
[21] Yan. S. J,Cheng. Y, Hu. H. Q, Zhou. C. J, Bo. L. D, Long. D. S., “Research of Graphene-Reinforced Aluminum Matrix Nanocomposites”, Journal of Materials Engineering, Vol. 1, No. 4, pp. 1–6, 2014.
[22] Boostani. A. F, Tahamtan. S, Jiang. Z, Wei. D, Yazdani. S, Khosroshahi. R. A., “Enhanced Tensile Properties of Aluminium Matrix Composites Reinforced with Graphene Encapsulated SiC Nanoparticles”, Journal of Composites Part A, Vol. 68, No. 2, pp. 155–163, 2015.
[23] Li. J. L, Xiong. Y. C, Wang. X. D, Yan. S. J, Yang. C, He. W. W, Chen. J. Z, Wang. S. Q, Zhang. X. Y, Dai. S. L., “Microstructure and Tensile Properties of Bulk Nanostructured Aluminum-Graphene Composites Prepared Via Cryomilling”, Journal of Materials Science and Engineering, Vol. 626, pp. 400–405, 2015.
[24] Rashad. M, Pan. F, Tang. A, Asif. M., “Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method”, Journal of Progress in Natural Science: Materials International, Vol. 24, No. 2, pp. 101–108, 2014.
[25] Shin. S. E, Choi. H. J, Shin. J. H, Bae. D. H., “Strengthening Behavior of Few-Layered Graphene/Aluminum Composites”, Journal of Carbon, Vol. 82, No. 63, pp. 143–151, 2015.
[26] Li. Z, Fan. G, Tan. Z, Guo. Q, Xiong. D, Su. Y, Li. Z. Q, Zhang. D., “Uniform Dispersion of Graphene Oxide in Aluminum Powder by Direct Electrostatic Adsorption for Fabrication of Graphene/Aluminum Composites", Journal of Nanotechnology, Vol. 25, No. 32, pp. 325-601, 2014.
[27] Wang. J, Li. Z, Fan. G, Pan. H, Chen. Z, Zhang. D., “Reinforcement with Graphene Nanosheets in Aluminum Matrix Composites”, Journal of Scripta Materialia, Vol. 66, No. 8, pp. 594–597, 2012.
[27] Wang. J, Li. Z, Fan. G, Pan. H, Chen. Z, Zhang. D., “Reinforcement with Graphene Nanosheets in Aluminum Matrix Composites”, Journal of Scripta Materialia, Vol. 66, No. 8, pp. 594–597, 2012.
[28] Hedayatian, M. Vahedi, Kh. Nezamabadi, A.R. and Momeni, A., “Effect of Graphene Oxide Reinforcement on the Ballistic Properties of Al6061-GO Nanocomposites”, In Persian,  Journal of Science and Technology of Composites, Vol. 6, No.3, pp. 401-410, 2019.
 [29] Wenzhen. L, Shiying. L, Qiongyuan. Z, Xue. Z., “Ultrasonic-Assisted Fabrication of SiC Nanoparticles Reinforced Aluminum Matrix Composites”, Journal of Materials Science Forum, Vol. 654-656, pp. 990-993, 2010.
[30] Aybarc. U, Yavuz. H, Dispinar. D, et al., “The Use of Stirring Methods for the Production of SiC-Reinforced Aluminum Matrix Composite and Validation Via Simulation Studies”, International Journal of Metalcasting, Vol. 13, pp. 190-200, 2019.
[31] Dwivedi. S. P, Sharma. S, Mishra. R. K., “Electromagnetic Stir Casting and its Process Parameters for the Fabrication and Refined the Grain Structure of Metal Matrix Composites”, International Journal of Advanced Research, Vol. 2, No. 3, pp.  639-649, 2014.
[32] Kumar. A, Lal. S, Kumar. S. J., ”Fabrication and Characterization of A359/Al2O3 Metal Matrix Composite using Electromagnetic Stir Casting Method”, Journal of Materials Research and Technology. Vol. 2, No. 3, pp.  250-254, 2013.
[33] Hashim. J, Looney. L, Hashmi. M., “Metal Matrix Composites: Production by The Stir Casting Method”, Journal of Materials Processing Technology, Vol. 92-93, pp. 1-7, 1999.
[34] Garcia-Hinojosa. J, Surrapa. M., “Effect of Grain Refinement Treatment on the Microstructure of Cast Al–7Si–SiCp Composites”, Journal of Materials Science and Engineering: A, Vol. 386, No. 1-2, pp. 54-60, 2004.
[35] Wang. R. G, Li. Z, Liu. W.B, Jiao. W.C, Hao. L.F, Yang. F, “Attapulgite–Graphene Oxide Hybrids as Thermal and Mechanical Reinforcements for Epoxy Composites”, Journal of Composites Science and Technology, Vol. 87, pp. 29, 2013.
[36] Han. Y.G, Wang. T.Q, Gao. X.X, Li. T.X and Zhang. Q., “Preparation of Thermally Reduced Graphene Oxide and the Influence of Its Reduction Temperature on the Thermal, Mechanical, Flame Retardant Performances of PS Nanocomposites”, Journal of Composite Part A, Vol. 84, p. 336, 2016.
[37]          Ramirza. C, Miranzo. P, Belmonte. M, Osendi. M.I, Poza. P, Vega-Diaz. S.M, Terrones. M., “Extraordinary Toughening Enhancement and Flexural Strength in Si3N4 Composites using Graphene Sheets”, Journal of the European Ceramic Society, Vol. 34, No. 2, p. 161, 2014.
[38] Vahdati, M., “Modelling and optimization of parameters affecting the tensile strength and ductility of aluminum-based composite produced by FSA via RSM”, In Persian, Journal of Science and Technology of Composites, Vol. 7, No. 4, pp. 1207-1216, 2021.
 [39] Bastwors. M, Kim. Y, Zhang. K, and, Wang. S., “Fabrication of Graphene Reinforced Aluminum Composite by Semi-Solid Processing", Journal of International Mechanical Engineering Congress and Exposition, 2013.
[40] Zhao. L.Y, Lu. H.M, and Gao. Z.J., “Microstructure and Mechanical Properties of Al/Graphene Composite Produced by Highpressure Torsion", Journal of Advanced Engineering Materials, Vol. 17, No. 7, p. 976, 2013.
 [41] Alipour. M, Eslami Farsani. R., “Investigation of the Microstructure and Mechanical Properties of Cast AA7068 Nanocomposite Reinforced with Graphene Nanoplates”, In Persian, Journal of Modares Mechanical Engineering, Vol. 17, No. 10, pp. 139-144, 2017.
[42] Babazade, A., Hadad, M.J., Safarabadi. M., “Investigation of the Effect of Graphene Nano Plates and Carbon Nanotubes on the Improvement of Mechanical Properties of Aluminum Matrix Nanocomposites”, In Persian, Journal of Science and Technology of Composites, Vol. 7, No. 4, pp. 1197-1206, 2021.
 [43] Ezatpour. H, and Torabi Parizi. M., “Effect of Carbonaceous Hybrid Reinforcement and Extrusion Temperature on the Microstructure and Mechanical Properties of AA7075 Matrix Hybrid Composite Prepared by Semi-Solid Casting”, In Persian, Journal of Science and Technology of Composites, Vol. 8, No. 1, pp. 1339-1352, 2021.
[44] Shin. S.E, Choi. H.J, Bea. D.H., “Strengthening Behavior of Few-Layered Graphene/Aluminum Composites”, Journal of Carbon, Vol. 82, pp. 143, 2015.
 [45] Baig. Z, Mamat. O and Mustapha. M., “Recent Progress on the Dispersion and the Strengthening Effect of Carbon Nanotubes and Graphene-Reinforced Metal Nanocomposites: A Review”, Journal of Critical Reviews in Solid State and Materials Sciences, Vol. 43, No. 1, pp. 1–46, 2018.
[46]Chung. D.D. L., “Carbon Composites”, Second Edition, University at Buffalo, The State University of New York, United States, Published by Elsevier, pp. 532-562, 2017.
[47] Y. Mei, P.Shao, M Sun and et al., “Deformation Treatment and Microstructure of Graphene-Reinforced Metal Matrix Nanocomposites: A review of Graphene Post-Dispersion”, Journal of Journal of Minerals , Metallurgy and Materials, Vol. 27, No. 7, pp. 888, 2020.
 [48] Jiang. Y.Y, Tan. Z.Q, Xu. R, Fan. G.L, Xiong. D.B, Guo. Q, Su. Y.S, Li. Z.Q, Zhang. D, “Tailoring the Structure and Mechanical Properties of Graphene Nanosheet/Aluminum Composites by Flake Powder Metallurgy Via Shift-Speed Ball Milling”, Journal of Composites Part A, Vol. 111, pp. 73, 2018.
[49]Shin. S.E, Bae. D.H., “Deformation Behavior of Aluminum Alloy Matrix Composites Reinforced with Few-Layer Graphene”, Journal of Composites Part A, Vol. 78, p. 42, 2015.
[50] Zhao. P.Z, Yang. W.S, Zhang. Q, Tan. X, Xiu. Z.Y, Qiao. J, Yu. Z.H and Wu. G.H, “Microstructure and Tensile Properties of 5083 Al Matrix Composites Reinforced with Graphene Oxide and Graphene Nanoplates Prepared by Pressure Infiltration Method”, Journal of Composites Part A, Vol. 109, pp. 151, 2018.
 [51] Dieter. G.E., “Mechanical Metallurgy”, Third Edition, Drexel Institute of Technology. Philadelphia, Publisher: McGraw-Hill Education, pp. 111-135, 1976.
[52] Can Şenel. M, Gürbüz. M, Koç. E., “Effect of Graphene Content on Tensile Strength and Microstructure of Aluminum Matrix Composites”, Journal of Materials Science,  Vol. 6, No. 3, pp. 79–84, 2018.
[53] Tsoukleri. G, Parthenios. J, Papagelis. K, Jalil. R, Ferrari. A.C, Geim. A.K, Novoselov. K.S, Galiotis. C., “Subjecting a Graphene Monolayer to Tension and Compression”, Vol. 5, No. 21, pp. 2397–2402, 2009.