نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران.

2 استاد، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهرا ن

3 استادیار، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران جنوب، تهرا ن.

10.22068/jstc.2021.530377.1725

چکیده

در این مطالعه تاثیرات دماهای مختلف محیطی و لایه چینی الیاف بر رفتار خمشی کامپوزیت های هیبریدی متشکل از رزین اپوکسی، الیاف بازالت و الیاف نازک تک جهته کربن مورد بررسی قرار گرفت. کامپوزیت های هیبریدی با استفاده از روش لایه گذاری دستی 2 لایه الیاف نازک تک جهته کربن و 6 لایه الیاف بازالت ساخته شدند. نمونه ها با سه نوع مختلف لایه چینی به طوری که موقعیت الیاف نازک تک جهته کربن از مرکز به سطوح نمونه ها تغییر می کرد، آماده شدند. همچنین، تاثیر دما بر رفتار خمشی نمونه ها با استفاده از دماهای 25، 60 و 95 درجه سانتی گراد مورد بررسی قرار گرفت. تمامی نمونه ها دارای شکست تدریجی بودند و به دلیل حضور الیاف نازک تک جهته کربن، رفتار شبه انعطاف‌پذیر نشان دادند. نتایج نشان دادند که با قرار دادن الیاف نازک تک جهته کربن در بیرونی ترین لایه ها، استحکام و مدول خمشی نمونه ها به شدت افزایش یافت. به عنوان نمونه، در دمای 25 درجه سانتی گراد، مدول خمشی نمونه هایی که الیاف نازک تک جهته کربن در بیرونی ترین لایه هایش قرار داشتند، حدود 42 درصد بالاتر از مدول خمشی نمونه های با الیاف نازک تک جهته کربن در مرکز بود. با این وجود، مقادیر کرنش شکست نمونه ها با نزدیک کردن الیاف نازک تک جهته کربن به مرکز نمونه ها افزایش داشت. همچنین، نتایج نشان داد که افزایش دما منجر به کاهش مقادیر استحکام و مدول خمشی نمونه ها شده، در حالی که مقادیر کرنش افزایش یافته است.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of stacking sequence of fibers and thermal environments on the flexural properties of the basalt fibers/thin-ply unidirectional carbon fibers/epoxy hybrid composites

نویسندگان [English]

  • Seyed Mohammad Saleh Mousavi-Bafrouyi 1
  • Reza Eslami-Farsani 2
  • Abdolreza Geranmayeh 3

1 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

3 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

In this study, the effects of temperature and stacking sequences of fibers on the flexural properties of the hybrid composites including epoxy resin, basalt fibers, and thin-ply unidirectional (UD) carbon fibers were investigated. The hybrid composites were prepared by hand lay-up method with 2 layers of carbon thin-ply and 6 layers of basalt fibers. The samples were fabricated with three different stacking sequences of fibers in which the position of thin-ply UD carbon fibers changed from the center to the outermost layers. Also, the temperature effects on the flexural properties of samples were investigated by applying different temperatures of 25, 60, and 95 ºC. All samples were fractured gradually and showed pseudo-ductility phenomenon due to thin-ply UD carbon fibers. Results showed that by placing the thin-ply UD carbon fibers at the outermost layers, the flexural strength and modulus of samples increased significantly. For example, at the temperature of 25 ºC, the flexural modulus of the samples was about 42% higher than that of the sample with thin-ply UD carbon fibers at the center of samples. However, the strain values of samples increased by nearing the thin-ply UD carbon fibers to the center layers. Also, results indicated that increasing the temperature caused the reduction of flexural strength and modulus of samples while the strain values increased.

کلیدواژه‌ها [English]

  • Hybrid composite
  • Carbon fibers thin-ply
  • Flexural properties
  • Pseudo-ductility
  • Different environmental temperatures
[1]   Salehi-Khojin, A., Mahinfalah, M., Bashirzadeh, R. and  Freeman, B., “Temperature Effects on Kevlar/Hybrid and Carbon Fiber Composite Sandwiches under Impact Loading“ Composite Structures, Vol. 78, No. 2, pp. 197-206, 2007.
[2]   Halvorsen, A., Salehi-Khojn, A., Mahinfalah, M. and  Nakhaei-Jazar, R., “Temperature Effects on the Impact Behavior of Fiberglass and Fiberglass/Kevlar Sandwich Composites“ Applied Composite Materials, Vol. 13, No. 6, pp. 369-383, 2006.
[3]   Aghamohammadi, H., Abbandanak, S., Eslami-Farsani, R. and  Siadati, S., “Effect of Various Surface Treatment Methods on the Flexural Properties of Fiber Metal Laminates“ Journal of Science and Technology of Composites, Vol. 6, No. 4, pp. 495-502, 2020.
[4]   Fazlollah-Poor, M., Eslami-Farsani, R. and  Aghamohammadi, H., “Experimental Investigation of the Effect of Shape Memory Alloy Wire Embedding on the Low-Velocity Impact Behavior of Fiber Metal Laminates Composites at Different Temperatures“ Journal of Science and Technology of Composites, Vol. 7, No. 3, pp. 1057-1063, 2020.
[5]   Czél, G., Jalalvand, M. and  Wisnom, M. R., “Design and Characterisation of Advanced Pseudo-Ductile Unidirectional Thin-Ply Carbon/Epoxy–Glass/Epoxy Hybrid Composites“ Composite Structures, Vol. 143, pp. 362-370, 2016.
[6]   Eslami Farsani, R., Ebrahim Nejad Khaljiri, H., Khorsand, H. and  Abbas Banaee, K., “Hybridization Effect of Fibers Reinforcement on Tensile Properties of Epoxy Composites“ Journal of Science and Technology of Composites, Vol. 1, No. 2, pp. 21-28, 2015.
[7]   Swolfs, Y., Geboes, Y., Gorbatikh, L. and  Pinho, S. T., “The Importance of Translaminar Fracture Toughness for the Penetration Impact Behaviour of Woven Carbon/Glass Hybrid Composites“ Composites Part A: Applied Science and Manufacturing, Vol. 103, pp. 1-8, 2017.
[8]   Najafi, M., Khalili, S. M. R. and  Eslami-Farsani, R., “Hybridization Effect of Basalt and Carbon Fibers on Impact and Flexural Properties of Phenolic Composites“ Iranian Polymer Journal, Vol. 23, No. 10, pp. 767-773, 2014.
[9]   Subagia, I. A., Kim, Y., Tijing, L. D., Kim, C. S. and  Shon, H. K., “Effect of Stacking Sequence on the Flexural Properties of Hybrid Composites Reinforced with Carbon and Basalt Fibers“ Composites Part B: Engineering, Vol. 58, pp. 251-258, 2014.
[10] Prusty, R. K., Rathore, D. K., Singh, B. P., Mohanty, S. C., Mahato, K. K. and  Ray, B. C., “Experimental Optimization of Flexural Behaviour through Inter-Ply Fibre Hybridization in Frp Composite“ Construction and Building Materials, Vol. 118, pp. 327-336, 2016.
[11] Bunsell, A. and  Harris, B., “Hybrid Carbon and Glass Fibre Composites“ Composites, Vol. 5, No. 4, pp. 157-164, 1974.
 [12] Manders, P. W. and  Bader, M., “The Strength of Hybrid Glass/Carbon Fibre Composites“ Journal of materials science, Vol. 16, No. 8, pp. 2246-2256, 1981.
[13] Fuller, J. and  Wisnom, M., “Exploration of the Potential for Pseudo-Ductility in Thin Ply Cfrp Angle-Ply Laminates Via an Analytical Method“ Composites Science and Technology, Vol. 112, pp. 8-15, 2015.
[14] Fuller, J. and  Wisnom, M., “Pseudo-Ductility and Damage Suppression in Thin Ply Cfrp Angle-Ply Laminates“ Composites Part A: Applied Science and Manufacturing, Vol. 69, pp. 64-71, 2015.
[15] Fuller, J., Jalalvand, M. and  Wisnom, M. R., “Combining Fibre Rotation and Fragmentation to Achieve Pseudo-Ductile Cfrp Laminates“ Composite Structures, Vol. 142, pp. 155-166, 2016.
[16] Czél, G., Jalalvand, M., Wisnom, M. R. and  Czigány, T., “Design and Characterisation of High Performance, Pseudo-Ductile All-Carbon/Epoxy Unidirectional Hybrid Composites“ Composites Part B: Engineering, Vol. 111, pp. 348-356, 2017.
 [17] Czél, G., Jalalvand, M. and  Wisnom, M. R., “Demonstration of Pseudo-Ductility in Unidirectional Hybrid Composites Made of Discontinuous Carbon/Epoxy and Continuous Glass/Epoxy Plies“ Composites Part A: Applied Science and Manufacturing, Vol. 72, pp. 75-84, 2015.
[18] Czél, G., Jalalvand, M. and  Wisnom, M., “Ductility in Unidirectional Hybrid Composites Made of Discontinuous Carbon/Epoxy and Continuous Glass/Epoxy Plies. Composites Part A: Applied Science and Manufacturing, 72, 75-84“ Composites: Part A, Vol. 72, pp. 75-84, 2015.
[19] Jalalvand, M., Czél, G. and  Wisnom, M. R., “Damage Analysis of Pseudo-Ductile Thin-Ply Ud Hybrid Composites–a New Analytical Method“ Composites Part A: Applied Science and Manufacturing, Vol. 69, pp. 83-93, 2015.
[20] Czél, G. and  Wisnom, M., “Demonstration of Pseudo-Ductility in High Performance Glass/Epoxy Composites by Hybridisation with Thin-Ply Carbon Prepreg“ Composites Part A: Applied Science and Manufacturing, Vol. 52, pp. 23-30, 2013.
[21] ASTM, I., “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials“ ASTM D790-07, 2007.
[22] Azimpour-Shishevan, F., Akbulut, H. and  Mohtadi-Bonab, M., “Effect of Thermal Cycling on Mechanical and Thermal Properties of Basalt Fibre-Reinforced Epoxy Composites“ Bulletin of Materials Science, Vol. 43, No. 1, pp. 1-10, 2020.
[23] Dasari, S., Saurabh, S., Mahato, K. K., Prusty, R. K. and  Ray, B. C., “Mechanical Properties of Glass/Carbon Inter-Ply Hybrid Polymer Composites at Different in-Situ Temperatures“ Materials Today: Proceedings, Vol. 39, pp. 1192-1197, 2021.
[24] Rathore, D. K., Prusty, R. K., Mohanty, S. C., Singh, B. P. and  Ray, B. C., “In-Situ Elevated Temperature Flexural and Creep Response of Inter-Ply Glass/Carbon Hybrid Frp Composites“ Mechanics of Materials, Vol. 105, pp. 99-111, 2017.
[25] Shishevan, F. A. and  Akbulut, H., “Effects of Thermal Shock Cycling on Mechanical and Thermal Properties of Carbon/Basalt Fiber-Reinforced Intraply Hybrid Composites“ Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 43, No. 1, pp. 441-449, 2019.
[26] Khalili, S. M. R., Najafi, M. and  Eslami-Farsani, R., “Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers“ Mechanics of Composite Materials, Vol. 52, No. 6, pp. 807-816, 2017.
[27] Sun, J., “Pseudo-Ductility in Cfrp Laminates through the Ply Weakening Method“, 2019.