نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

2 دانش آموخته کارشناسی ارشد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران.

3 دانشیار، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران.

10.22068/jstc.2021.531427.1730

چکیده

امروزه مقاومت در برابر ضربه کم سرعت و تحمل آسیب به وجود آمده، اهمیت بالایی در طراحی سازه های کامپوزیتی به خصوص در صنعت هوافضا پیدا کرده است و باعث تلاش محققان پیرامون ارزیابی رفتار ضربه کم سرعت در طراحی کامپوزیت‌ها شده است. در این پژوهش، مدل عددی برای ضربه کم سرعت چندلایه کامپوزیتی کربن/اپوکسی ارائه شده است. این مدل آسیب سه بعدی، بر اساس مکانیک آسیب پیوسته با توسعه زیرروال (UMAT) در نرم افزار آباکوس با حلگر صریح به دست آمده است. در این مدل، آسیب بین لایه‌ای و درون‌لایه‌ای در نظر گرفته شده است و برای در نظر گرفتن پلاستیسیته در ماتریس، رفتار غیرخطی برشی اعمال شده است. برای ارزیابی نتایج به دست آمده از مدل عددی، آزمون ضربه در سه سطح انرژی ضربه (10، 15 و 20 ژول) انجام گردید. به علاوه، به منظور صحت‌سنجی مکانیزم های خرابی و میزان خرابی ایجاد شده در اثر ضربه، مساحت ناحیه تورق با استفاده از روش رادیولوژی اندازه گیری گردید. با مقایسه پاسخ کلی رفتار ضربه، تطابق خوبی بین نتایج آزمون تجربی و شبیه سازی بدست آورده شد که نشان می‌دهد مدل خرابی استفاده شده به خوبی قابلیت پیش‌بینی رفتار کلی کامپوزیت را در این فرآیند دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Numerical and experimental study of carbon / epoxy composite laminate response to low velocity impact

نویسندگان [English]

  • Kian Amirashjaee 1
  • Sajjad Fakhreddini-Najafabadi 2
  • Fathollah Taheri-Behrooz 3

1 1- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

2 1- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

3 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

Nowadays, low-velocity impact resistance and damage tolerance have become very important in the design of composite structures, especially in the aerospace industry, and have led researchers to evaluate the low velocity impact response in the design of composites. In this research, a numerical model for low velocity impact (LVI) of carbon /epoxy composite laminate is proposed. This 3D damage model is based on continuum damage mechanics with subroutine development (UMAT) in Abaqus/Explicit. In this model, the interlaminar and intralaminar damage is considered and the nonlinear shear behavior is applied to consider the plasticity in the matrix. To evaluate the results obtained from the numerical model, impact testing was performed at three levels of impact energy (10 J, 15 J and 20 J). In addition, in order to verify the failure mechanisms and the amount of damage caused by the impact, delamination area was measured using radiology technique. By comparing the response of the impact behavior, a good correlation was obtained between the experimental test results and the simulation, which shows that the failure model used is well able to predict the behavior of the composite in this process.

کلیدواژه‌ها [English]

  • Low-velocity impact (LVI)
  • Finite element model
  • Carbon-fiber-reinforced polymer (CFRP)
  • continuum damage mechanics (CDM)
[1] Rahmani MKH, Khosravi H. "An experimental and numerical study on the low-velocity impact behavior of polymer matrix Kevlar-Basalt hybrid composites". Iran J Manuf Eng 2020;7:44–55.
[2] Ebrahimi F, Habibi S. "Nonlinear low-velocity impact response of CFRP enhanced with CNT in hygrothermal environments". Sci J Aerosp Mech 2017;14:65–80.
[3] Abrate S. "Impact on composite structures". Cambridge University Press; 2005.
[4] Shishevan FA, Abazadeh B. "An experimental study on the low velocity impact behavior of hybrid epoxy composites". J Sci Technol Compos 2019;6:571–80. https://doi.org/10.37358/MP.20.2.5364.
[5] Dehkordi MT, Nosraty H, Shokrieh MM. "Low velocity impact simulation of intraply hybrid composites reinforced with brittle and ductile fibers". Comput Methods Eng 2013;32:115–24.
[6] Pachenari MH, Mozaffari A, Shariyat M. "Non-Linear finite element low-velocity impact response analysis of a viscoelastic composite plate, employing a layerwise theory". J Solid Fluid Mech 2016;6:97–108.
[7] L.Kachanov. "Introduction to Continuum Damage Mechanics" 1986;10.
[8] Donadon M V., Iannucci L, Falzon BG, Hodgkinson JM, de Almeida SFM. "A progressive failure model for composite laminates subjected to low velocity impact damage". Comput Struct 2008;86:1232–52. https://doi.org/10.1016/j.compstruc.2007.11.004.
[9] Falzon BG, Apruzzese P. "Numerical analysis of intralaminar failure mechanisms in composite structures. Part I: FE implementation". Compos Struct 2011;93:1039–46. https://doi.org/10.1016/j.compstruct.2010.06.028.
[10] Falzon BG, Apruzzese P. "Numerical analysis of intralaminar failure mechanisms in composite structures. Part II: Applications". Compos Struct 2011;93:1047–53. https://doi.org/10.1016/j.compstruct.2010.06.022.
[11] Faggiani A, Falzon BG. "Predicting low-velocity impact damage on a stiffened composite panel'. Compos Part A Appl Sci Manuf 2010;41:737–49. https://doi.org/10.1016/j.compositesa.2010.02.005.
[12] Tita V, de Carvalho J, Vandepitte D. "Failure analysis of low velocity impact on thin composite laminates: Experimental and numerical approaches". Compos Struct 2008;83:413–28. https://doi.org/10.1016/j.compstruct.2007.06.003.
[13] Feng D, Aymerich F. "Finite element modelling of damage induced by low-velocity impact on composite laminates". Compos Struct 2014;108:161–71. https://doi.org/10.1016/j.compstruct.2013.09.004.
[14] Liu H, Falzon BG, Tan W. "Predicting the Compression-After-Impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates". Compos Part A Appl Sci Manuf 2018;105:189–202. https://doi.org/10.1016/j.compositesa.2017.11.021.
[15] González E V., Maimí P, Camanho PP, Turon A, Mayugo JA. "Simulation of drop-weight impact and compression after impact tests on composite laminates". Compos Struct 2012;94:3364–78. https://doi.org/10.1016/j.compstruct.2012.05.015.
[16] Lopes CS, Camanho PP, Gürdal Z, Maimí P, González E V. "Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations". Compos Sci Technol 2009;69:937–47. https://doi.org/10.1016/j.compscitech.2009.02.015.
[17] Mendes PAAE, Donadon M V. "Numerical prediction of compression after impact behavior of woven composite laminates". Compos Struct 2014;113:476–91. https://doi.org/10.1016/j.compstruct.2014.03.051.
[18] Tan W, Falzon BG, Chiu LNS, Price M. "Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates". Compos Part A Appl Sci Manuf 2015;71:212–26. https://doi.org/10.1016/j.compositesa.2015.01.025.
[19] Abir MR, Tay TE, Ridha M, Lee HP. "Modelling damage growth in composites subjected to impact and compression after impact". Compos Struct 2017;168:13–25. https://doi.org/10.1016/j.compstruct.2017.02.018.
[20] Liu H, Falzon BG, Tan W. "Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates". Compos Part B Eng 2018;136:101–18. https://doi.org/10.1016/j.compositesb.2017.10.016.
[21] Soto A, González E V., Maimí P, Mayugo JA, Pasquali PR, Camanho PP. "A methodology to simulate low velocity impact and compression after impact in large composite stiffened panels". Compos Struct 2018;204:223–38. https://doi.org/10.1016/j.compstruct.2018.07.081.
[22] Tuo H, Lu Z, Ma X, Xing J, Zhang C. "Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions". Compos Part B Eng 2019;163:642–54. https://doi.org/10.1016/j.compositesb.2019.01.006.
[23] Tuo H, Lu Z, Ma X, Zhang C, Chen S. "An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates". Compos Part B Eng 2019;167:329–41. https://doi.org/10.1016/j.compositesb.2018.12.043.
[24] Liu H, Liu J, Ding Y, Hall ZE, Kong X, Zhou J, et al. "A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites". Compos Part B Eng 2020;201:108389. https://doi.org/10.1016/j.compositesb.2020.108389.
[25] Daniel IM, Luo JJ, Schubel PM. "Three-dimensional characterization of textile composites". Compos Part B Eng 2008;39:13–9. https://doi.org/10.1016/j.compositesb.2007.02.002.
[26] Daniel IM, Luo JJ, Schubel PM, Werner BT. "Interfiber/interlaminar failure of composites under multi-axial states of stress". Compos Sci Technol 2009;69:764–71. https://doi.org/10.1016/j.compscitech.2008.04.016.
[27] Puck A, Schürmann H. "Failure analysis of FRP laminates by means of physically based phenomenological models". Compos Sci Technol 2002;62:1633–62. https://doi.org/10.1016/S0266-3538(01)00208-1.
[28] Brewer JC, Lagace PA. "Quadratic Stress Criterion for Initiation of Delamination". J Compos Mater 1988;22:1141–55. https://doi.org/10.1177/002199838802201205.
[29] Benzeggagh ML, Kenane M. "Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus". Compos Sci Technol 1996;56:439–49. https://doi.org/10.1016/0266-3538(96)00005-X.
[30] ASTM International. "D7136/D7136M − 15 standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event". Am Stand Test Methods 2011;i:4–6. https://doi.org/10.1520/D7136.
[31] ASTM International. "D7137/D7137M-17 standard test method for compressive residual strength properties of damaged polymer matrix composite plates". Am Stand Test Methods 2012;i:1–17. https://doi.org/10.1520/D7137.
[32] SIMULIA. Systems D. "ABAQUS documentation". 2020 n.d.
[33] Ridha M, Wang CH, Chen BY, Tay TE. "Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences". Compos Part A Appl Sci Manuf 2014;58:16–23. https://doi.org/10.1016/j.compositesa.2013.11.012.
[34] Turon A, Dávila CG, Camanho PP, Costa J. "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models". Eng Fract Mech 2007;74:1665–82. https://doi.org/10.1016/j.engfracmech.2006.08.025.
[35] ASTM International. "D3039/D3039M Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials". Am Stand Test Methods 2014:1–13. https://doi.org/10.1520/D3039.
[36] ASTM International. "D6641/D6641M − 14 Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression ( CLC )". ASTM Int 2012;i:1–11. https://doi.org/10.1520/D6641.
[37] ASTM International. "D3518 Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a 45° Laminate". Adv Mater Res 2013;641–642:583–90. https://doi.org/10.4028/www.scientific.net/AMR.641-642.583.
[38] Tuo H, Lu Z, Ma X, Xing J, Zhang C. "Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions". Compos Part B Eng 2019;163:642–54. https://doi.org/10.1016/j.compositesb.2019.01.006.
[39] Shokrieh MM, Omidi MJ. "The Impact Resistance of Fiber-Reinforced Polymer Composites: A Review". Iran J Polym Sci Technol 2011;24:255–77.
[40] Catalanotti G, Camanho PP, Xavier J, Dávila CG, Marques AT. "Measurement of resistance curves in the longitudinal failure of composites using digital image correlation". Compos Sci Technol 2010;70:1986–93. https://doi.org/10.1016/j.compscitech.2010.07.022.
[41] Zhang J, Zhang X. "Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact". Compos Struct 2015;125. https://doi.org/10.1016/j.compstruct.2015.01.050.
[42] Tan W, Falzon BG. "Modelling the crush behaviour of thermoplastic composites". Compos Sci Technol 2016;134:57–71. https://doi.org/10.1016/j.compscitech.2016.07.015.