نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مواد، دانشگاه حکیم سبزواری، سبزوار.

2 دکتری، مهندسی مواد، دانشگاه حکیم سبزواری ، سبزوار.

10.22068/jstc.2021.141890.1695

چکیده

میزان بهبود خواص مکانیکی کامپوزیت های زمینه آلومینیومی تقویت شده با مواد کربنی، پایین تر از حد انتظار است. خواص ذاتی اجزای سازنده و روش تولید، بر ویژگی های ریز ساختاری و عملکرد این کامپوزیت ها تاثیر بسزایی دارد. در تحقیق حاضر، استراتژی ساده ای برای بهبود توزیع تقویت کننده ی کربنی با حداقل آسیب ساختاری و پیوند فصل مشترکی مناسب، اتخاذ شده است. کامپوزیت GNP-CNT/AA7075 از تلفیق فرایند متالورژی پودر ورقه ای، روش انحلالی به همراه ریخته گری نیمه جامد و اکستروژن دمای بالا، تولید شده است. پس از تعیین نسبت بهینه ی VGNP/VCNT در تقویت کننده ی هیبریدی کربنی (0.167)، اثر حضور آن بر تحولات ریزساختاری و خواص مکانیکی آلیاژ AA7075 مورد بررسی قرار گرفته است. فرایند ریخته گری نیمه جامد علاوه بر تخریب ساختار شبکه ای فاز تقویت کننده، سبب به دام فتادن مکانیکی آن ها درون زمینه و جدایش عناصر آلیاژی بر سطح تقویت کننده ی کربنی شده است. در دمای بهینه ی فرایند اکستروژن (400 °C)، توزیع یکنواخت GNP-CNT در درون زمینه و کاهش 39% اندازه ی دانه، حاصل شده است. ریزسختی، مقادیر استحکام تسلیم کششی و فشاری این کامپوزیت نسبت به آلیاژ AA7075 به ترتیب 17%، 51% و 28% بهبود یافته است. اثر بخشی فوق العاده ی استحکام کششی،3952% ، در نتیجه ی انتقال بار موثر (کشیده شدن تقویت کننده ی کربی در سطح شکست) و جذب انرژی (پل زدن) است.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of carbonaceous hybrid reinforcement and extrusion temperature on the microstructure and mechanical properties of AA7075 matrix hybrid composite prepared by semi-solid casting

نویسندگان [English]

  • Hamidreza Ezatpour 1
  • Marziyeh Torabi Parizi 2

1 Department of Engineering Sciences, Hakim Sabzevari University, Sabzevar, Iran.

2 Department of Engineering Sciences, Hakim Sabzevari University, Sabzevar, Iran.

چکیده [English]

The improvement level of mechanical properties of aluminum matrix composites reinforced to carbonaceous materials is lower than expected. The intrinsic characteristics and production methods are effective parameters on microstructure and efficiency of these composites. In this study, AA7075/CNTs+GNPs hybrid composites were fabricated by flake powder metallurgy process combined to solution method, semi-solid casting and high temperature extrusion. After determination of optimum VGNP/VCNT ratio in hybrid carbonaceous reinforcement (= 0.167), its effect on microstructure and mechanical properties of AA7075 alloy was investigated. The semi-solid casting process led to destroy the network structure of carbonaceous reinforcements and to entrap them mechanically into the aluminum matrix and to segregate alloy elements on their surface. In optimum temperature of extrusion process (= 400 °C), the uniform distribution of carbonaceous reinforcement and the decrease in the average grain size (~39%) were obtained. Hardness, tensile and compressive strengths of the hybrid composite were improved by 17%, 51% and 28% compared to AA7075 matrix alloy. The extraordinary efficiency of tensile strength (~3952%) was obtained in the hybrid composite as a result of effective load transfer due to effect of the pulling out and the bridging of carbonaceous reinforcements.

کلیدواژه‌ها [English]

  • AA7075 alloy
  • Carbonaceous hybrid reinforcement
  • extrusion
  • Microstructure
  • Mechanical properties
[1] Imanian, S., Eghbali, B., and Pajouhanfar, Y., “Investigation of Microstructure and Mechanical Properties of As-Casted AA7075 Matrix Composite Reinforced by Graphen Nanoplate and Carbon Nanotube,” In Persian, Proceeding of the 16th Scientific Student Conference on Materials Engineering and Metallurgy of Iran, 2019. https://civilica.com/doc/961739.
[2] Torabi Parizi, M., Ebrahimi, G. R., Ezatpour, H. R., and Paidar, M. “The Structure Effect of Carbonaceous Reinforcement on The Microstructural Characterization and Mechanical Behavior of AZ80 Magnesium Alloy,” Journal of Alloys and Compounds, Vol. 809, 151682, 2019.
[3] Bashiri Goodarzi, H. and Yarmohammad Tooski, M., “An experimental study of the effects of carbon nanotube and graphene addition on the impact strength of Epoxy/Basalt fiber composite”, In Persian, Journal of Science and Technology of Composites, Vol. 6, No.3, pp. 411-418, 2019.
[4] Setoodeh, A.R. Sokhandani, N. and Zebarjad, S.M., “Theoretical and experimental study on the effect of multi-walled carbon nanotubes on improving the tensile properties and toughness of Vinyl ester resin”, In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 539-550, 2019.
[5] Adarestani Farahani, A., Mehrabi, F., and Mirzaee, O., “Investigation of Aluminum Matrix Composites Reinforced to Carbon Nanotubes and Production Challenges,” In Persian, Proceeding of the New Materials National Congress, Iran, 2008. https://civilica.com/doc/50671/.
[6] Guo, B., Chen, B., Zhang, X., Cen, X., Wang, X., Song, M., Ni, S., Yi, J., Shen, T., and Du, Y., “Exploring the Size Effects of Al4C3 on the Mechanical Properties and Thermal Behaviors of Al-Based Composites Reinforced by SiC and Carbon Nanotubes,” Carbon, Vol. 135, pp. 224-235, 2018.
[7] Sun, W., Zhan, K., Yang, Z., Zhao, R., Wang, T., Zhao, B., Ya, Y., and Yang, J., “Facile Fabrication of GO/Al Composites with Improved Dispersion of Graphene and Enhanced Mechanical Properties by Cu Doping and Powder Metallurgy," Journal of Alloys and Compounds, Vol. 815, 152465, 2020.
[8] Tabesh, A. Ebrahimi, Gh.and Ezatpour, H.R., “The investigation and comparison of mechanical properties and microstructure Al/CNT and Al/CNT/Al2O3 composites produced by mixed accumulative roll bounding”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 464-470, 2018.
[9] Alipour, M., and Eslami Farsani, R., “Investigation of the Microstructure and Mechanical Properties of Cast AA7068 Nanocomposite Reinforced with Graphene Nano Plates, In Persian, Modares Mechanical Engineering,” Vol. 17, No. 10, pp. 139-144, 2017.
[10] Yu, Z., Tan, Z., Xu, R., Ji, G., Fan, G., Xiong, D-B., Guo, Q., Li, Z., and Zhang. D., “Enhanced Load Transfer by Designing Mechanical Interfacial Bonding in Carbon Nanotube Reinforced Aluminum Composites,” Carbon, Vol. 146, pp. 155-161, 2019.
[11] Li, Z. Fan, G. Guo, Q. Li, Z. Su, Y., and Zhang, D., “Synergistic Strengthening Effect of Graphene-Carbon Nanotube Hybrid Structure in Aluminum Matrix Composites,” Carbon, Vol. 95, pp. 419–427, 2015.
[12] Ghasali, E., Sangpour, P., Jam. A., Rajaei. H., Shirvanimoghaddam. K., and Ebadzadeh. T., Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Archives of Civil and Mechanical Engineering, Vol. 18, pp. 1042-1054, 2018.
[13] Jiang, Y., Tan, Z., Fan, Wang, G. L., Xiong, D-B., Guo, Su, Q. Y., Li, Z. and Zhang, D., “Reaction-Free Interface Promoting Strength-Ductility Balance in Graphene Nanosheet/Al Composites,” Carbon, Vol. 158, pp. 449-455, 2019.
[14] Kim, W.J., and Yu, Y.J., “The Effect of the Addition of Multiwalled Carbon Nanotubes on the Uniform Distribution of TiC Nanoparticles in Aluminum Nanocomposites,” Scripta Materials, Vol. 72-73, pp. 25-28, 2014.
[15] Yu, Z. Yang, W. Zhou, C., Zhang N., Chao, Z., Cao, Y., Sun, Y., Shao, P., and Wu, G., “Effect of Ball Milling Time on Graphene Nanosheets Reinforced Al6063 Composite Fabricated by Pressure Infiltration Method,” Carbon, Vol. 141, pp. 25-39, 2019.
[16] Xu, R., Tan, Z., Xiong, D., Fan, G., Guo, Q., Zhang, J., Su, Y., Li, Z., and Zhang, D., “Balanced Strength and Ductility in CNT/Al Composites Achieved by Flake Powder Metallurgy Via Shift-Speed Ball Milling,” Composites Part A: Applied Science and Manufacturing, Vol. 96, pp. 57-66, 2017.
[17] Huang, P. Bazarnik, D. Wan, D. Luo, P. Henrique R. Pereira, M. Lewandowska, J. Yao, B.E. Hayden, and T. G. Langdon. The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Materialia, 164 (2019): 499-511.
[18] Fan, G., Jiang, Y., Tan, Z., Guo, Q., Xiong, D-b., Su, Y., Lin, R., Hu, L., Li, Zhiqiang, and Di, Zhang., “Enhanced Interfacial Bonding and Mechanical Properties in CNT/Al Composites Fabricated by Flake Powder Metallurgy,” Carbon, Vol. 130, pp. 333-339, 2018.
[19] Torabi Parizi, M., Ezatpour, H. R., and Ebrahimi, G. R., “Effect of Graphene Nanoplatelets Content on the Microstructural and Mechanical Properties of AZ80 Magnesium Alloy,” Materials Science and Engineering A, Vol. 742, No. 4, pp. 373-389, 2019.
[20] Mirjavadi, S. S., Alipour, M., Hamouda A. M. S., Kord, S., Koppad, Praveennath G., Abuzin, Y. A., and Keshavamurthy, R., “Effect of Hot Extrusion and T6 Heat Treatment on Microstructure and Mechanical Properties Of Al-10Zn-3.5Mg-2.5Cu Nanocomposite Reinforced with Graphene Nanoplatelets,” Journal of Manufacturing Processes, Vol. 36, pp. 264-271, 2018.
[21] Jiang, L., Fan, G. L., Li, Z. Q., Kai, X. Z., Zhang, D., and Chen, Z.X., “An Approach to the Uniform Dispersion of A High-Volume Fraction of Carbon Nanotubes in Aluminum Powder,” Carbon, Vol. 49, pp. 1965-1971, 2011.
[22] Ju, J. M., Wang, G., Sim, K. H., Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties, Journal of Alloys and Compound, Vol. 704, pp. 585-592, 2017.
[23] Sajjadi, S. A., Ezatpour, H. R., and Torabi Parizi, M., “Comparison of Microstructure and Mechanical Properties of A356 Aluminum Alloy/Al2O3 Composites Fabricated by Stir and Compo-Casting Processes,” Materials and Design, Vol. 34, pp. 106-111, 2012.
[24] Li, J., Zhang, X., and Geng, L., “Effect of Heat Treatment on Interfacial Bonding and Strengthening Efficiency of Graphene in GNP/Al Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 121, pp. 487-498, 2019.
[25] Li, Z., Fan, G., Tan, Z., Guo, Q., Xiong, D., Su, Y., Li, Z., and Zhang D., “Uniform Dispersion of Graphene Oxide in Aluminum Powder by Direct Electrostatic Adsorption for Fabrication of Graphene/Al Composites,” Nanotechnology, Vol. 25, 325601, 2014.
[26] Zhou, W., Mikulova, P., Fan, Y., Kikuchi, K., Nomura, N., and Kawasaki, A., “Interfacial Reaction Induced Efficient Load Transfer in Few-Layer Graphene Reinforced Al Matrix Composites for High-Performance Conductor,” Composites Part B: Engineering, Vol. 167, pp. 93-99, 2019.
[27] Chen, X-H., and Yan. H., “Solid–Liquid Interface Dynamics During Solidification of Al 7075–Al2O3np Based Metal Matrix Composites,” Materials & Design, Vol. 94, pp. 148-158, 2016.
[28] Fishkis, K., “Interfaces and Fracture Surfaces in Saffil/Al-Mg-Cu Metal Matrix Composites,” J Materials Science, Vol. 26, pp. 2651–2661, 1191.
[29] Torabi Parizi, M., Ezatpour, H. R., Ebrahimi, G. R., “High Mechanical Efficiency, Microstructure Evaluation and Texture of Rheo-Casted and Extruded AZ80-Ca Alloy Reinforced with Processed Al2O3/GNPs Hybrid Reinforcement,” Materials Chemistry and Physics, Vol. 218, pp. 246-255, 2018.
[30] Alipour, M., and Eslami-Farsani, R., “Synthesis and Characterization of Graphene Nanoplatelets Reinforced AA7068 Matrix Nanocomposites Produced by Liquid Metallurgy Route,” Materials Science and Engineering: A, Vol. 706, pp. 71-82, 2017.
[31] Hu, T., Ma, K., Topping, T. D., Schoenung, J. M. and Lavernia, E. J. “Precipitation Ohenomena in An Ultrafine-Grained Al Alloy,” Acta Materials, Vol. 61, pp. 2163-2178. 2013.
[32] Hong, S. I., and Gray, G. T. “Microstructure and Microchemistry of An Al-Zn-Mg-Cu Alloy Matrix 20 vol.% SiC Composite,” Acta Metallurgica and Materialia, Vol. 40, No. 12, pp. 3299-3315, 1992.
[33] Wu, C., Shi, R., Luo, G., Zhang, J., Shen Q., Gan, Z., Liu, J., and Zhang, L., “Influence of Particulate B4C with High Weight Fraction on Microstructure and Mechanical Behavior of An Al-Based Metal Matrix Composite,” Journal of Alloys and Compounds, Vol. 789, pp. 825-83, 2019.
[34] Wu, L. M., Seyring, M., Rettenmayr, M., and Wang, W. H., “Characterization of Precipitate Evolution in An Artificially Aged Al–Zn–Mg–Sc–Zr Alloy,” Materials Science and Engineering: A, Vol. 527, No. 4-5, pp. 1068-1073, 2010.
[35] Bailey, J. E., and Hirsch, P. B., “The Recrystallization Process in Some Polycrystalline Metals,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 267, No. 1328, pp. 11-30, 1962.
[36] Mandal, S., Jayalakshmi, M., Bhaduri, A. K., and Subramanya Sarma, V., “Effect of Strain Rate on the Dynamic Recrystallization Behavior in A Nitrogen-Enhanced 316L (N),” Metallurgical and Materials Transactions A, Vol. 45, No. 12, pp. 5645-5656, 2014.
[37] Taheri-Mandarjani, M., Zarei-Hanzaki, A., and Abedi., H. R., “Hot Ductility Behavior of An Extruded 7075 Aluminum Alloy,” Materials Science and Engineering: A, Vol. 637, pp. 107-122, 2015.
[38] Singh, L. K., Bhadauria, A., and Laha, T., “Comparing the Strengthening Efficiency of Multiwalled Carbon Nanotubes and Graphene Nanoplatelets in Aluminum Matrix,” Powder Technology, Vol. 356, pp. 1059-1076, 2019.
[39] Yang, W., Zhao, Q., Xin, L., Qiao, J., Zou, J., Shao, P., Yu, Z., Zhang, Q., and Wu, G., Microstructure and Mechanical Properties of Graphene Nanoplates Reinforced Pure Al Matrix Composites Prepared by Pressure Infiltration Method,” Journal of Alloys and Compounds, Vol. 732, pp. 748-758, 2018.
[40] Jiang, Y., Xu, R., Tan, Z., Ji G., Fan, G., Li, Z., Xiong, D-B., Guo, Q., Li, Z., and Zhang, D., “Interface-induced strain hardening of graphene nanosheet/aluminum composites,” Carbon, Vol. 146, pp. 17-27, 2019.
[41] Shao, P., Yang, W., Zhang Q., Meng ,Q., Tan, X., Xiu, Z., Qiao, J., Yu, Z., and Wu, G., “Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method,” Composites Part A: Applied Science and Manufacturing, Vol. 109, pp. 151-162, 2018.
[42] Shin, S. E., Choi, H. J., Shin, J. H., and Bae, D. H., “Strengthening Behavior of Few-Layered Graphene/Aluminum Composites,” Carbon, Vol. 82, pp. 143-151, 2015.
[43] Zare, H., Jahedi, M., Toroghinejad, M. R., Meratian, M., and Knezevic M., “Compressive, Shear, and Fracture Behavior of CNT Reinforced Al Matrix Composites Manufactured by Severe Plastic Deformation,” Materials & Design, Vol. 106, pp. 112-119, 2016.
[44] Kumar, S. J. N., Keshavamurthy, R., Haseebuddin, and M. R., Koppad, P. G., “Mechanical Properties of Aluminium-Graphene Composite Synthesized by Powder Metallurgy and Hot Extrusion,” Transaction Indian Institute Metals, Vol. 70, pp. 605, 2017.