Frequency analysis of SMA composite beam resting on Pasternak elastic foundation using four engineering beam theories

Iman Rahimi Bafrani, Hamid Ekhteraei Toussi*

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
*P.O.B. 9177948944, Mashhad, Iran, ekhteraee@um.ac.ir

Abstract
In the last decades, the production of smart materials have led to modern structures with superior properties. Among these materials one may points to the Shape Memory Alloys (SMAs) which show the capability of retaining the large plastic strains when exposed to outer temperature or traction loadings. The development of SMA actuators in the forms of wire and stent have attracted many attentions in the fields of engineering and smart structures. In this regard, an analytical model is represented for the composite beam strained SMA wires embedded in the middle of the cross section. The governing equations of Euler-Bernoulli, Rayleigh, Shear and Timoshenko beams are extracted using four engineering beam theories.

Keywords
Frequency analysis
Composite beam
Shape memory alloy wires
Elastic foundation
لایه زیراکم تجربه داشته‌ایم که ممکن است نماده‌های مطرح شده توانایی شیب‌سازی فیزیکالی چسباندن در محیط‌های آب‌دار باشد.

در سایر گروه‌هایی که از ابزارهای حالت‌دار می‌توانستند نظر از دست‌دهنده تغییر فاز مانند: اپتی یا تمایل‌های فیزیکی، سه‌گانه استفاده از ابزارهای حالت‌دار مطلوب نمی‌تواند به روش تغییر فاز‌های مشابه یا دیگر‌هایی از مراحل تشکیل‌دهنده آب‌دار باشد.

پیچکی غیط یه نتیجه اثرات تغییر فاز کامپوزیتی بهتر به‌ویژه در حالت‌های حالت‌دار مطلوب نمی‌تواند به روش تغییر فاز‌های مشابه یا دیگر‌هایی از مراحل تشکیل‌دهنده آب‌دار باشد.

اگر اندازه‌هایی از طریق تغییر فاز‌های مشابه یا دیگر‌هایی از مراحل تشکیل‌دهنده آب‌دار باشد، نتایج مطالعه‌ها به‌وهی‌یک‌یک می‌باشد. اما اگر اندازه‌هایی از طریق تغییر فاز‌های مشابه یا دیگر‌هایی از مراحل تشکیل‌دهنده آب‌دار باشد، نتایج مطالعه‌ها به‌وهی‌یک‌یک می‌باشد. اما اگر اندازه‌هایی از طریق تغییر فاز‌های مشابه یا دیگر‌هایی از مراحل تشکیل‌دهنده آب‌دار باشد، نتایج مطالعه‌ها به‌وهی‌یک‌یک می‌باشد.
تحلیل فرکانسی کریستال‌های آبی آنزیم‌دار میوه از نظر ساختار اسید‌پتاسی نتایج به‌صورت ذکر گردید که این تحقیق از جمله پیشگامان از نظر آزمایش‌های جنگلی می‌باشد. همچنین، این تحقیق به عنوان یکی از اولین تحقیقات در این زمینه در ایران به‌شمار می‌آید.


\[
A_{SMN} = \frac{\pi D_{SMN}^2}{4} \times 4
\]

در رابطه (۱)، \( \sigma_R \) تخلیه تفکر دریای حرارتی در این سیستم. رابطه حرارتی و حرارتی در سیستم حاصل می‌شود.


\[
\sigma - \sigma_0 = E (\xi - \xi_0) + \theta (T - T_0) + \Omega (\xi - \xi_0)
\]

در رابطه (۲)، \( \sigma_0 \) به معنی مولکول بالاتر حرارتی می‌باشد. \( \sigma_0 \) به معنی مولکول بالاتر حرارتی می‌باشد.


\[
\sigma_R = \frac{a_c E (\xi + \theta) (T - T_0) + \Omega (\xi - \xi_0)}{1 - \frac{E(\xi_0)}{a_c}}
\]

در رابطه (۳)، \( \sigma_R \) به معنی مولکول بالاتر حرارتی می‌باشد. \( \sigma_R \) به معنی مولکول بالاتر حرارتی می‌باشد.


\[
\frac{\sigma_2 - \sigma_1}{2} = \frac{\pi \xi_0}{\cos \left( \frac{\pi}{A_f - A_c} (T - A_c) \right) + 1}
\]

در رابطه (۴)، \( \sigma_2 \) به معنی مولکول بالاتر حرارتی می‌باشد. \( \sigma_2 \) به معنی مولکول بالاتر حرارتی می‌باشد.
Variation operator


\\\[ E(\xi) = \xi E_M + (1 - \xi) E_A \]

در رابطه (22) مدول بالکن \( E_M \) به صورت رابطه (12) بیان می‌شود.

\( \Omega(\xi) = -c_i E(\xi) \)

در رابطه (23) مدول \( c_i \) به صورت رابطه (13) بیان می‌شود.

4- تحلیل فرکانسی براساس تئوریهای مهنده‌سازی

\[ u = -\xi \frac{\partial w(x,t)}{\partial x}, \quad v = 0, \quad w = w(x,t) \]

در رابطه (24) \( u \) و \( v \) به ترتیب معرف جابجایی در راستای محور طولی تور، همچنین و خیز می‌باشند.

\[ \varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{xy} = \varepsilon_{yx} = 0 \]

\[ \sigma_{xx} = \sigma_{yy} = \sigma_{xy} = \sigma_{yx} = 0 \]

(15)

انرژی کرنش کل به صورت رابطه (16) می‌باشد.

\[ H = \frac{1}{2} \int_0^L E \left( \frac{\partial^2 w}{\partial x^2} \right)^2 \, dx \]

در رابطه (16) نشان دهنده ضریب بست و بکر و ضریب \( K_S \) برای \( c_i \) می‌باشد.

\[ T = \frac{1}{2} \int_0^L A \frac{\partial^2 w}{\partial x^2} \, dx \]

کار ناشی از تور پایین‌بند حافل‌گیری را را تور به صورت رابطه (17) می‌باشد.

\[ W_{\text{SMA}} = \frac{1}{2} \int_0^L \rho A \frac{\partial w}{\partial x} \, dx \]

اصول همیلتون به صورت رابطه (19) می‌باشد.

1. Euler-Bernoulli Beam Theory (EBT)
2. Classical Beam Theory (CBT)
3. Winkler foundation coefficient
4. Shear foundation coefficient
5. Hamilton’s principle
نمایش نظریه تیر رایلی، این نظریه مشابه نظریه تیر اولر برتنولی می‌باشد با این تفاوت که اثر اینترنتی در این نظریه لحاظ نشده است. با پیش‌آوری جنبی، کل این توجه به این اثر اینترنتی به صورت رابطه (32) می‌باشد.

\[
\frac{d^2 W}{dx^2} + (K - \beta \omega_n^2) W(x, t) = 0
\]

حل آن با توجه به روش‌های مدل‌سازی رابطه (32) شکل می‌شود. مدل‌سازی با استفاده از رابطه (32) قابل استفاده است. با مدل‌سازی مواده محوری بالاباش، این تابع به صورت رابطه (33) می‌باشد. به دست می‌آید.

\[
\omega_n = \pm \sqrt{\frac{n^2 \pi^2 [n^2 \pi^2 + (K + P) + K_W]}{\beta + n^2 \pi^2}}
\]

با اعمال این رابطه رایلی و کامپوزیت، حکم و شرایط مربوط به صریح رابطه (32) می‌باشد. یک فکانسی تیر کامپوزیت

\[
T = \int_0^L \left( \frac{1}{2} \rho A \left( \frac{d^2 w}{dx^2} \right)^2 + \rho l \left( \frac{d^3 w}{dx^3} \right)^2 \right) dx
\]

با اعمال این رابطه رایلی و کامپوزیت، حکم و شرایط مربوط به صریح رابطه (32) می‌باشد.
این تحلیل فرکانس تیم کامپوزیتی آلیاژ حافظه دار روي ستر ال سبک پاستراناک ...
با جای گذاری روابط (18) و (22) در اصل همیلتون، رابطه (66) می‌شود.

\[ \delta \left[ E \begin{bmatrix} 12 & \frac{1}{2} \left( E \frac{\partial^2 \phi}{\partial x^2} + KAG \frac{\partial \omega}{\partial x} - \phi \right) \right] dx + \frac{1}{2} \int \left[ K_ww^2 + K_s \frac{\partial \omega}{\partial x} \right] dx \\
+ \frac{1}{2} \int \left[ \rho A \left( \frac{\partial \phi}{\partial t} \right)^2 + pI \left( \frac{\partial \phi}{\partial t} \right)^2 \right] dx + \frac{1}{2} \int \left[ p \frac{\partial \omega}{\partial x} \right] dx = 0 \]

(66)

با اعمال تغییراتی روی جمله رابطه (66) به دست می‌آید. ممکن است شباهتی مبنای باشد.

\[ -(KAG + K_s + P) \frac{\partial^2 \omega(x,t)}{\partial x^2} + K_ww(x,t) \]

\[ + KAG \frac{\partial \phi(x,t)}{\partial x} + \rho A \left( \frac{\partial \phi(x,t)}{\partial t} \right)^2 = 0 \]  

(67)

\[ -(E - 1 + \bar{K}_s + P) \frac{\partial^2 \bar{W}(x)}{\partial x^2} + K_w \bar{W}(x) + \frac{\partial \bar{\phi}(x)}{\partial x} + \frac{\partial^2 \bar{\phi}(x)}{\partial x^2} = 0 \]  

(68)

با اعمال پاسخ‌های هارماتونیک رابطه (65) در معمل‌های دیفرانسیل روابط (66) و (67) حاصل می‌شود.

\[ -[1 + \bar{K}_s + P] \frac{d^2 \bar{W}(x)}{dx^2} + \left( K_w - \bar{w}_n \right) \bar{W}(x) + \frac{\partial \bar{\phi}(x)}{\partial x} = 0 \]  

(71)

\[ \frac{1}{\gamma} \frac{d^2 \bar{\phi}(x)}{dx^2} + \frac{(\alpha - \bar{w}_n^2) \bar{\phi}(x) - \alpha}{\gamma} d \bar{W}(x) = 0 \]  

(72)

با اعمال رابطه (66) و (67) می‌توان معمل‌های دیفرانسیل به صورت رابطه (73) به دست آورد.

\[ \frac{d^2 \bar{W}(x)}{dx^2} + r \frac{d^2 \bar{W}(x)}{dx^2} + s \bar{W}(x) = 0 \]  

(73)

در رابطه (74) تعریف می‌شود.

\[ r = -\frac{K_w + \bar{w}_n^2 [1 + \gamma (1 + \bar{K}_s + P)] - \alpha \bar{K}_s + P)}{1 + \bar{K}_s + P} \]

\[ s = \gamma (\bar{w}_n^2 - \alpha) \frac{(\bar{w}_n^2 - K_w)}{1 + \bar{K}_s + P} \]  

(74)

معدل‌های مشخصه‌برای رابطه (73) به صورت رابطه (75) نوشته می‌شود.

\[ m^2 + r m^2 + s = 0 \]  

(75)
در شکل‌های ۲ تا ۵، نمودار فرکانس طبیعی مد اول بر حسب ضرایب پدست استیک پاسترناک برای شاخه‌های ۲ میلی‌متر و ۲۰ میلی‌متر بر اساس نظریه‌های مختلف مهندسی نشان می‌دهد. مشاهده می‌شود در دمای بالاتر از دمای پایین امیدیت، فرکانس طبیعی نیم کامپوزیت‌بای افتایی تعداد بالاتر را دارد. در بدین‌صورت، همچنین، اثر ضریب استیک بر روی برایت به ضریب استیک و نیکک در این افتایی فرکانس غالب است.

برای شبیه‌سازی با پرایبی کردن در نهایتی به ساده‌ترین روش‌های می‌باشد.

شکل ۳ فرکانس طبیعی مد اول بر حسب ضریب استیک و نیکک در ضخامت ۳ میلی‌متر.

شکل ۴ فرکانس طبیعی مد اول بر حسب ضریب استیک و نیکک در ضخامت ۳ میلی‌متر.

شکل ۵ فرکانس طبیعی مد اول بر حسب ضریب استیک و نیکک در ضخامت ۳۰ میلی‌متر. دمای ۶۷ درجه سانتی‌گراد و با تعداد الیاف حافظه‌دار ۵ نام‌شده.
نتایج بدست آمده از تحقیق فرکانسی بررسی نظیره تیموشکو با تابع‌های مناسب شده در مرجع [11] مقایسه شده و مطابقت سیار خوبی را بین نتایج شان می‌دهد که این نشان دهنده اطمینان از صحت مداوم‌الکن‌ها است و می‌تواند شکل‌داده شود تا به‌عنوان نتایج تجربی.

جدول 2. 5 نتایج حاضر از تحقیق فرکانسی بررسی نظیره تیموشکو در ضخامت 15 میلی‌متر و بالاتر از ضخامت 20 میلی‌متر درصد خطا (%)

<table>
<thead>
<tr>
<th>ضخامت (میلی‌متر)</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد خطا (%)</td>
<td>42</td>
<td>29</td>
<td>24</td>
</tr>
</tbody>
</table>

جدول 3. 5 نتایج حاضر از تحقیق فرکانسی بررسی نظیره تیموشکو در ضخامت 15 میلی‌متر و بالاتر از ضخامت 20 میلی‌متر درصد خطا (%)

<table>
<thead>
<tr>
<th>ضخامت (میلی‌متر)</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد خطا (%)</td>
<td>42</td>
<td>29</td>
<td>24</td>
</tr>
</tbody>
</table>

نتایج بدست آمده از تحقیق فرکانسی بررسی نظیره تیموشکو با تابع‌های مناسب شده در مرجع [11] مقایسه شده و مطابقت سیار خوبی را بین نتایج شان می‌دهد که این نشان دهنده اطمینان از صحت مداوم‌الکن‌ها است و می‌تواند شکل‌داده شود تا به‌عنوان نتایج تجربی.

شکل 8. نمودار فرکانسی طبیعی مود سوم بررسی استفاده می‌شود. می‌تواند 3 میلی‌متر، ضخامت 15 میلی‌متر و بالاتر از ضخامت 20 میلی‌متر درصد خطا (%) نشان می‌دهد. شکل 9 نمودار فرکانسی طبیعی مود سوم بررسی استفاده می‌شود. می‌تواند 3 میلی‌متر، ضخامت 15 میلی‌متر و بالاتر از ضخامت 20 میلی‌متر درصد خطا (%) نشان می‌دهد.
نتیجه‌گیری

در این تحقیق، تحلیل ارتعاشات نیروی کامپوزیتی با ایال‌های حافظه‌دار روی استیک با استفاده از نظریه‌های مختلف مهندسی مورد مطالعه قرار گرفت. نیروی کامپوزیتی در فرآیند نیروی کامپوزیتی با استفاده از نظریه‌های نظامی، نیروی به دلیل برخورد با ظرفیت نیروی کامپوزیتی دارد. نیروی به دلیل نیروی کامپوزیتی قرار گرفت. مشاهده شد که در نمونه‌های با ضخامت‌های مختلف ۳ میلی‌متر و ۳۰ میلی‌متر، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو در فرآیند نیروی کامپوزیتی قرار گرفت.

شرکت، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو قرار گرفت. مشاهده شد که در نمونه‌های با ضخامت‌های مختلف ۳ میلی‌متر و ۳۰ میلی‌متر، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو در فرآیند نیروی کامپوزیتی قرار گرفت.

شکل ۱۱ فرکانس‌های اول برحسب نسبت طول به بخش نسبت در دمای ۳۰۰ درجه سانتی‌گراد با تعداد ایال‌های حافظه‌دار ۵

شکل ۹ فرکانس‌های اول برحسب نسبت ضخامت به طول بخش در دمای ۳۶۵ درجه سانتی‌گراد با تعداد ایال‌های حافظه‌دار ۵

شکل ۱۲ فرکانس‌های اول برحسب نسبت طول به بخش نسبت در دمای ۳۰۰ درجه سانتی‌گراد با تعداد ایال‌های حافظه‌دار ۵

شکل ۱۰ فرکانس‌های اول برحسب نسبت طول به بخش نسبت در دمای ۳۰۰ درجه سانتی‌گراد با تعداد ایال‌های حافظه‌دار ۵

مشاهده شد که در دمای بیشتر از دمای پایان استیک، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو قرار گرفت. مشاهده شد که در نمونه‌های با ضخامت‌های مختلف ۳ میلی‌متر و ۳۰ میلی‌متر، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو قرار گرفت. مشاهده شد که در نمونه‌های با ضخامت‌های مختلف ۳ میلی‌متر و ۳۰ میلی‌متر، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو قرار گرفت. مشاهده شد که در نمونه‌های با ضخامت‌های مختلف ۳ میلی‌متر و ۳۰ میلی‌متر، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو قرار گرفت.

نتیجه‌گیری

در این تحقیق، تحلیل ارتعاشات نیروی کامپوزیتی با ایال‌های حافظه‌دار روی استیک با استفاده از نظریه‌های مختلف مهندسی مورد مطالعه قرار گرفت. نیروی کامپوزیتی در فرآیند نیروی کامپوزیتی با استفاده از نظریه‌های نظامی، نیروی به دلیل برخورد با ظرفیت نیروی کامپوزیتی دارد. نیروی به دلیل نیروی کامپوزیتی قرار گرفت. مشاهده شد که در نمونه‌های با ضخامت‌های مختلف ۳ میلی‌متر و ۳۰ میلی‌متر، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو قرار گرفت. مشاهده شد که در نمونه‌های با ضخامت‌های مختلف ۳ میلی‌متر و ۳۰ میلی‌متر، فرکانس‌های اول بهرنویلی، رایلی، پرسی و تیمونوشكو قرار گرفت.
تحلیل فرکانسی بی‌پیمایی‌نار در روی بستر اسپکتر با استفاده از...


تحلیل فرکانسی تیر کامپوزیت آلیاژ حافظه‌دار روی بستر الاستیک پاسترناک

ایمان رحیمی بافرانی و حمید اختراعی طوسی

نشریه علوم و فناوری کامپوزیت