نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد, دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

3 کارشناس ارشد، پلیمر، شرکت کیمیافروز، تهران، ایران

4 دانشجوی دکترا، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

چکیده

نانوکامپوزیت‌هایی بر پایه آمیخته PA6/ABS (40/60) در حضور 3 قسمت وزنی سازگارکننده POE-gr-MA و حاوی 2، 5 و 8 درصد وزنی نانوذرات کلسیم کربنات (15-10 نانومتر) با استفاده از اکسترودر دوپیچی و دستگاه قالب‌گیری تزریق پلاستیک تولید شد. شکل‌شناسی و خواص ضربه‌ای نمونه‌های مختلف مورد بررسی قرار گرفت. وجود نانوذرات کلسیم کربناتپوشش داده شده باعث تغییر در ریزساختار و افزایش اندازه ذرات ABS در زمینه PA6 شد. این نتیجه به ماهیت غیرقطبی ABS و نانوذرات کلسیم کربنات پوشش داده شده و همچنین اندازه بسیار ریز نانوذرات نسبت داده شد. به‌کارگیری نانوذرات کلسیم کربنات در آمیخته PA6/ABS به‌طور قابل ملاحظه‌ای بر خواص ضربه‌ای اثر گذاشت. نتایج آزمایشات تجربی نشان داد، مقاومت ‌ضربه‌ای شکاف‌دار در نمونه‌های محتوی 2 درصد وزنی نانوذرات، بیش از 160 درصد نسبت به آمیخته پلیمری PA6/ABS افزایش یافت. در نمونه‌های ضربه بدون شکاف، در حضور 2 و 5 درصد وزنی نانوذرات، به‌دلیل انعطاف‌پذیری زیاد نمونه‌ها، شکستی رخ نداد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental studies on morphology and impact behavior of PA6/ABS/CaCO3 nanocomposites

نویسندگان [English]

  • Mohammad Baraheni 1
  • Karim Shelesh-Nezhad 2
  • Azam Miralami 3
  • Ali Reza Adli 4
  • Behzad Hashemi Soudmand1 4

1 Department of Manufacturing Engineering, University of Tabriz, Tabriz, Iran

2 Department of Manufacturing Engineering, University of Tabriz, Tabriz, Iran

3 Kimia Forooz Inc., Tehran, Iran

4 Department of Manufacturing Engineering, University of Tabriz, Tabriz, Iran

چکیده [English]

Nanocomposites based on PA6/ABS (60/40) containing 3 phr of POE-gr-MA and 2, 5 and 8 wt.% of CaCO3 nanoparticles (10-15 nm) were prepared by melt compounding, using a co-rotating twin-screw extruder, followed by injection molding process. The morphology and impact properties were characterized. The inclusion of coated CaCO3 nanoparticles into PA6/ABS altered the morphology, and as a consequence, ABS particle size in PA6 matrix was increased. This result was attributed to the nonpolar natures of ABS and coated CaCO3 as well as very small nanoparticles’ size. Incorporation of CaCO3 nanoparticles noticeably affected the impact properties. By adding 2 wt.% of nanoparticles, the impact strength in notched samples was increased as high as 160% when compared to net PA6/ABS. Due to their high flexibility, no break was observed in unnotched samples containing 2 and 5 wt.% of nanoparticles.

کلیدواژه‌ها [English]

  • PA6/ABS
  • CaCO3 nanoparticle
  • Morphology
  • impact behavior

 

[1]     Crawfard, R.J., “Plastics Engineering,”, Third ed., Elsevier Butterworth-Heinemann publication, USA, pp. 13-14, 2008.

[2]    Utracki, L. A., “Polymer blends handbook,” First ed., Kluwer Academic Publishers, Netherlands, pp. 1045-1070, 2002.

[3]    Tjong, S. C. Xu, S. A. Li, R. K. Y. Mai, and Y. W., “Short Glass Fibre-Reinforced Polyamide 6,6 Composites Toughened with Maleated SEBS,” Composites Science Technology, Vol. 62, No. 15, pp. 2017_2027, 2002.

[4]    Arsad, A. Rahmat, A.R. and Hasan, A., “Mechanical and Rheological Properties of PA6/ABS Blends _ With and Without Short Glass Fiber,” Reinforced Plastics and Composites, Vol. 29, pp. 2808-2820, 2010.

[5]    Mohammadian-Gezaz, S. Ghasemi, I. and Oromiehie, A.R., “Crystallization Behavior of PA6 in ABS/PA6 Blends Prepared by In Situ Polymerization and Compatibilization Method,” In Persian, Polymer Engineering and Science, Vol. 22, No. 6, pp. 469-482, 2010.

[6]   

 

Misra, A. Sawhney, G. and Ananda, K. R., “Structure and Properties of Compatibilized Blends of Polyamide-6 and ABS,” Journal of Applied Polymer Science, Vol. 50, pp. 1179 – 1186, 1993.

[7]    Lai, S.-M. Li, H.-C. and Liao, Y.-C. “Properties and preparation of Compatibilized Nylon 6 Nanocomposites/ABS Blends: Part II – Physical and Thermal Properties,” European Polymer Journal, Vol. 43, pp. 1660–1671, 2007.

[8]    Ajayan, P.M. Schadler, L.S. and Braun, P.V., “Nanocomposite Science and Technology,” First ed., Weinheim: Wiley- VCH, Germany, pp. 77-80, 2003.

[9]    Pinnavaia, T.J. and Beall, G.W., “Polymer-clay Nanocomposites,” First ed., Wiley, UK, pp. 173-189, 2001.

[10]  Deng, F. and Zheng, Q.S., “Interaction Models for Effective Thermal and Electric Conductivity of Carbon Nanotube Composites,” Acta Mechanical Solida Sinica, Vol. 22, No. 1, pp. 1-16, 2009.

[11]  Karsli, N. G. Yilmaz, T. Aytac, A. and Ozkoc G., “Investigation of Erosive Wear Behavior and Physical Properties of SGF and/or Calcite Reinforced PA6/ABS Composites,” Composites، Vol. 44, pp. 385–393, 2013.

[12]  Bergstorm, J. Thuvander, F. Devos, P. and Boher, C., “Wear of Die Materials in Full Scale Plastic Injection Molding of Glass Fiber Reinforced Polycarbonate,” Wear، Vol. 251, pp. 1511-1521. 2001.

[13]  Fu, S. and Lauke, B., “Characterization of Tensile Behavior of Hybrid Short Glass Fiber/Calcite Particle/ABS Composite,” Composites، Vol. 29A، pp. 575-583, 1998.

[14]  DeBoest, J.F., “Reinforced Polypropylenes,” Engineering Plastics, Vol. 2, pp. 192-193, 1988.

[15]  Moczo, J. and Pukanszky, B., “Polymer Micro and Nanocomposites: Structure, Interactions, Properties,” Journal of Industrial and Engineering Chemistry, Vol. 14, No. 5, pp. 535-563, 2008.

[16]  Tjong, S.C., “Structural and Mechanical Properties of Polymer Nanocomposites,” Materials Science and Engineering: R:Reports, Vol. 53, No. 3-4, pp. 73-197, 2006.

[17]  Schmidt, D. Shah, D. and Giannelis, E.P., “New Advances in Polymer/Layered Silicate Nanocomposites, Current Opinion in Solid State and Materials Science,” Vol. 6, No .3, pp. 205-212, 2002.

[18]  Ashabi, L. Jafari, S.H. and Khonakdar, H. A., “The Preparation and Properties of Compatibilized PA6/ABS/Clay Nanocomposites,” In Persian, second nanotechnology conference, University of Kasahan, 2007.

[19]  Mohd Ishak, Z.A. Kusmono chow, W.S. Takeichi, and Rochmadi. T., “Effect of Organoclay Modification in the Mechanical, Morphology and Thermal Properties of Injection Molded Polyamide6/Polypropylene/Montmorillonite Nanocomposites,” Proceedings of the Polymer Processing Society, 24th Annual Meeting, Salerno (Italy), pp. 15-19, 2008.

[20]  Gorna, K. Hund, M. Vucak, M. Gröhn, F. and Wegner G., “Amorphous Calcium Carbonate in Form of Spherical Nanosized Particles and Its Application as Fillers for Polymers,” Materials Science and Engineering, Vol. 477, pp. 217-225, 2008.

[21]  Chan, C.M. Wu, J. Li, J.X. and Cheung, Y.K., “Polypropylene/Calcium Carbonate Nanocomposites,” Polymer, Vol. 43, No. 10, pp. 2981-2992, 2002.

[22]  Fuad, M. Y. A. Hanim, H. R. Zarina, Z. and Mohd, A., “Polypropylene/Calcium Carbonate Nanocomposites-Effects of Processing Techniques and Maleated Polypropylene Compatibiliser,” Express Polymer Letters, Vol. 4, No. 10, pp. 611- 620, 2010.

[23]  Shelesh-Nezhad, K. Montakhabi-Kalajahi, S. and Ehsani-zonuz, J., “Mechanical Properties, Shrinkage Behavior and Water Absorption of PA6/PP/CaCO3 Nanocomposites,” In Persian, Polymer Engineering and Science, Vol. 24, No. 6, pp. 481-492, 2012.

[24]  Jafari, S.H. Khonakdar, H.A. and Ashabi, L., “Evolution of Co-continuous Morphology along the Screw Length in a Co-rotating Twin-screw Extruder and Its Effect on Impact Strength of Compatibilized PA6/ABS Blend,” In Persian, Polymer Engineering and Science, Vol. 23, No. 1, pp. 41-52, 2010.

[25]  Rao, N. and O'Brien, K., “Design Data for Plastics Engineers,” First edition, Hanser Publishers, Germany, pp. 17-18, 1998.

[26]  Zhang, Q. Yu, Z. Xie, X.L. and Maim, Y.W., “Crystallization and Impact Energy of Polypropylene /CaCO3 Nanocomposites with Nonionic Modifier,” Polymer, Vol. 45, pp. 5985-5994, 2004.

[27]  Fu, S.Y. Feng, X.Q. Lauke, B. and Mai, Y.W., “Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites,” Composites Part B, Vol. 39, pp. 933-961, 2008.

[28]  Lam, T.D. Hoang, T.V. Quang, D.T. and Kim, J.S., “Effect of Nano-Sized and Surface Modified Precipitated Calcium Carbonate on Properties of CaCO3/Polypropylene Nanocomposites,” Materials Science and Engineering Part A, Vol. 501, pp. 87-93, 2009.

[29]  Guo, J. Tang, Y. and Xu, Z., “Performance and Thermal Behavior of Wood Plastic Composite Produced by Nonmetals of Pulverized Waste Printed Circuit Boards,” Journal of Hazardous Materials, Vol. 179, pp. 203–207, 2010.