نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران

2 کارشناس ارشد، مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران

چکیده

در این تحقیق به‌تحلیل ارتعاشات آزاد و خمش استاتیکی ورق ساندویچی انحنادار با وجود لایه روغن هوشمند مغناطیسی در رویه‌ها پرداخته شده است. ورق ساندویچی مورد بررسی دارای شرایط تکیه‌گاهی ساده بوده و تحت بارگذاری خمشی می‌باشد. برای استخراج معادلات حرکت حاکم بر سیستم، برای اولین بار از تئوری مرتبه بالای بهبود یافته‌ی ورق‌های ساندویچی و اصل همیلتون برای ورق ساندویچی دوانحنایی تحت بارگذاری خمشی با لایه روغن هوشمند در رویه‌ها استفاده شده است. سپس، بعد از مقایسه با نتایج مشابه موجود در حیطه‌ی این موضوع و اطمینان از صحت معادلات استخراج شده، اثرات شدت میدان مغناطیسی و پارامتر‌های هندسی مثل ضخامت هسته، ضریب منظری ورق، شعاع انحنا و موارد دیگر بر مشخصه‌های ارتعاشی و خیز ورق مورد بررسی قرار گرفته است. در بخش ارتعاشات آزاد مشاهده شده که فرکانس طبیعی ورق با افزایش شدت میدان مغناطیسی و ضریب منظری افزایش و با افزایش نسبت ضخامت هسته به ضخامت کل ورق کاهش پیدا می‌کند. همچنین مشاهده شده، فرکانس‌های طبیعی ورق برای حالت دو انحنایی بیشتر از حالت‌های تک انحنایی و تخت می‌باشد. در بخش تحلیل خمش استاتیکی نیز مشاهده شده است که با افزایش نسبت ضخامت هسته به ضخامت ورق، و با افزایش نسبت شعاع‌های انحنا خیز ورق افزایش، و با افزایش شدت میدان مغناطیسی،‌ خیز ورق کاهش می‌یابد. بنابراین می‌توان با تغییر این پارامترها، فرکانس طبیعی و خیز سیستم را در محدوده‌ی مورد نظر حاصل نمود و همچنین با داشتن یک میدان مغناطیسی قابل کنترل در سیستم، می‌توان فرکانس طبیعی و خیز سیستم را کنترل نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Free Vibration and Static Bending Analysis of Curved Sandwich Panel with Magneto-Rheological Fluid Layer in Sheets using Improved High Order Sandwich Panel Theory

نویسندگان [English]

  • Keramat Malekzade fard 1
  • Mohsen Rezaei Hasanabadi 2

1 Department of Aerospace Enineering. Malek Ashtar University

2 Department of Aerospace Enineering. Malek Ashtar University

چکیده [English]

In this study, free vibration and static bending analysis of curved sandwich panel with magneto-rheological (MR) fluid layer in sheets have been studied. Sandwich panel that is studied is double curved with simply support boundary condition and it is under bending load. In order to derive the governing equations of motion, an improved high order sandwich panel theory and Hamilton's principle are used for the first time. After comparing with similar results in the domain of this issue and ensure that the accuracy of the derived equations, the effect of magnetic field on the frequency of the panel has been investigated. The effects of magnetic field intensity and changing the geometric parameters such as aspect ratio, thickness of MR layer, radius of curvature and thickness ratio on the characteristics of vibration and deflection have been studied. In the free vibration analysis section, the obtained results showed that the natural frequency of panel increases by increasing the magnetic field, also increases by increasing the panel aspect ratio, and decreases by increasing the core thickness to panel thickness ratio. Likewise the obtained results showed that the natural frequenciy for the case of double curved panel is more than single curved and flat panel. In the static bending analysis section, obtained results showed that the natural deflection of the panel decreases by increasing the magnetic field, increases by increasing the radiuses of curvatures ratio, and increases by increasing the core thickness to panel thickness ratio. Therefore, by changing these parameters, the natural frequency and deflection of the system, can be changed in the desired range, and also by having a controllable magnetic field in the system, the natural frequency and deflection of the system can be controlled.

کلیدواژه‌ها [English]

  • Free vibration
  • Static Bending
  • Double Curved Sandwich Panel
  • Improved High Order Theory
  • Magneto-Rheological
[1]  
Reddy, J. N. "Mechanics of Laminated Composite Plates and Shells", Theory and Analysis. 2nd Edition, CRC Press, New york, 2004.
 
 
[2]
J. L, Donald, “Engeneering ana;ysis of smart materials systems”. s.l. John Wiley & Sons Inc., 2007.
[3]
Rahmani, O. Khalili, S.M.R. Malekzadeh, K. Hadavini, H., “Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core”, Composite Structures, Vol. 91, No. 2, pp. 229-235, 2009.
[4]
Rahmani, O. Khalili, S.M.R. Malekzadeh, K., “Free vibration response of composite sandwich cylindrical shell with flexible core”, Composite Structures, Vol. 92, No. 5, pp. 1269–1281, 2010.
[5]
Najafizadeh, M.M. Azari, Sh. Salmasi, F., “Bending Analysis of Rectangular Composite Plates with Piezoelectric Layers Based on the First Order Shear Deformation Theory Using the Extended Kantorovich Method”, Aerospace Mechanics Journal, Vol. 6, No. 4, pp. 57–69, 2011. (In Persian)
[6]
Kheirikhah, M.M. Khalili, S.M.R. Malekzadeh Fard, K., “Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory”, European Journal of Mechanics - A/Solids, Vol. 31, No. 1, pp. 54–66, 2012.
[7]
Viola, E. Tornabene, F. Fantuzzi, N., “General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels”, Composite Structures, Vol. 95, pp. 639-666, 2013.
[8]
Golmakani, M.E. Emami, M. “Nonlinear bending and buckling analysis of functionally graded anuular plates”, Modares Mechanical Engineering, Vol. 13, No. 14, pp. 1-14, 2014. (In Persian)
[9]
G. H. Rahimi, R. Rahmani, Pitch effect on flexural behavior of sandwich structure with composite skins and a corrugated combinatorial core with trapezoidal geometry, Modares Mechanical Engineering, Vol. 14, No. 5,  pp. 194-202, 2014. (In Persian)
[10]
M. Ansari, M. Golzar, A. H. Behravesh, Evaluation of corrugated composite beam deflection by shape memory alloy wire, Modares Mechanical Engineering, Vol. 14, No. 8,  pp. 49-58, 2014. (In Persian)
[11]
Dariushi, S. Sadighi, M., “Analysis of composite sandwich beam with enhanced nonlinear high order sandwich panel theory”, Modares Mechanical Engineering, Vol. 14, No. 16, pp. 1-8, 2015 (In Persian)
[12]
Khanmohammadi, M. Ahmadi, I., “Progressive damage analysis of laminated composite plate subjected to bending fatigue”, Modares Mechanical Engineering, Vol. 15, No. 2, pp. 72-80, 2015 (In Persian)
[13]
Rouzegar, J. Gholami, M., “Non-linear bending analysis of thick rectangular plates by four-variable  refined plate theory and Dynamic Relaxation method”, Modares Mechanical Engineering, Vol. 15, No. 2, pp. 221-230, 2015 (In Persian)
[14]
Sadat Fattahi, S. Zabihollah, A., “Vibration of laminated composite structures integrated with magnetorheological fluid segments”, Modares Mechanical Engineering, Vol. 13, No. 12, pp. 156-160, 2013. (In Persian)
[15]
Rajamohan, V. Sedaghati, R. Rakheja, S., “Vibration analysis of a multi-layer beam containing magnetorheological fluid”, Smart Mater. Struct., Vol. 19, pp. 1-12, 2010.
[16]
Rajamohan, V. Rakheja, S. Sedaghati. R., “Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid”, Journal of Sound and Vibration, Vol. 329, pp. 3451–3469, 2010.
[17]
Lara-Prieto, V., “Vibration characteristics of MR cantilever sandwich beams: experimental study”, Smart Mater. Struct., Vol. 19, 2010.
[18]
Malekzadeh Fard, K. Rezaei Hassanabadi, M. Livani, M., “Single-objective and multi-objective optimization of curved sandwich panel with magneto-rheological fluid core using genetic algorithm”, Modares Mechanical Engineering, Vol. 14, No. 15, pp 414-422, 2015. (In Persian)
[19]
Frostig, Y. Thomsen, O.T., “High-order free vibration of sandwich panels with a flexible core”, International Journal Solids Structures, Vol. 41, pp. 1697–1724, 2004.
[20]
Sun, Q. Zhou, J. X. Zhang, L., “An Adaptive Beam Model and Dynamic Characteristics of Magnetorheological Materials”, Journal of Sound and Vibration, Vol. 261, pp. 465–481, 2003.
[21]
Reddy, J.N., “A refined nonlinear theory of plates with transverse shear deformation”, International Journal Solids Structures, Vol. 20, pp. 881–896, 1987.
[22]

Whitney, J. M., “Shear correction factors for orthotropic laminates under static load”, Journal of Applied Mechanics, Vol. 40, pp. 302-304, 1973.

[23]
Reddy, J.N., “Energy and variational methods in applied mechanics, First Edition”, New York: John Wiley, 1984.
[24]
Sanders. J.L., “An improved first approximation theory for thin shells”, NASA THR24, 1959.
[25]
Keshmiri, A. Ghaheri, A. Taheri-Behrooz, F., “Buckling and vibration of symmetrically-laminated composite elliptical plates restin on Winkler-type foundation subjected to initial in-plane stresses”, Modares Mechanical Engineering, Vol. 14, No. 1, pp. 19-26, 2014. (In Persian)
[26]
Reddy, J.N., “Mechanics of Laminated Composite Plates and Shells, Theory and Analysis”, Second Edition, New york: CRC Press, 2004.
[27]
Paknejada, R. Ashenai, F. Malekzadeh Fard, K., “Response of fully-clamped composite laminated plate subjected to low velocity impact using Galerkin method”, Modares Mechanical Engineering, Vol. 14, No. 1, pp. 50-45, 2014. (In Persian)
[28]
Biglari, H. Jafari, A.A., “High-order free vibrations of doubly-curved sandwich panels with flexible core based on a refined three-layered theory”, Composite Structures, Vol. 92, pp. 2685-3694, 2010.
[29]
Asgari, M. “Optimum design of composite sandwich panels with Magneto-Rheological fluid layer using new high order theory”, MSc Thesis, K. N. Toosi University of Technology, Iran, 2010.